Groundwater Discharge Permit Application

REFERENCES IN THIS DOCUMENT TO "RULES" ARE TO ADMINISTRATIVE RULES IMPLEMENTING PART 31 OF THE NATURAL RESOURCES AND ENVIRONMENTAL PROTECTION ACT, 1994 PA 451, AS AMENDED, BEING R 323.2101 TO 2192 AND R 323.2201 TO 2240.

GENERAL INFORMATION

Please type or print clearly		
1. DISCHARGE FACILITY NAME: Wa	stewater Treatment Facility for t	he Eagle Project RECEIVED
FACILITY OWNER NAME AND MAI Name	LING ADDRESS: Rio Tinto	JUL 0 6 2012
Street Address or P.O. Box: 50	4 Spruce Street	Water Resources P M. Permits Section Groundwater Permits Uni
City, State and Zip Code: Ishpo	eming, MI 49849	
Telephone No.: 906-486-1257 Fax No.: 906-486-1053 3. CONTACT PERSON		ant to Rule 2210(y) and 2218 will be sent r Email: kristen.mariuzza@riotinto.com
	zza, Environmental & Permitting	Manager
Street Address or P.O. Box: 50	4 Spruce Street	
City, State and Zip Code: Ishpe	eming, MI 49849	
Telephone No.: 906-486-1257	Fax No.:	906-486-1053
DISCHARGE LOCATION Street Address: 6510 Triple A	Road	
City: Michigamme	State: MI	Zip Code: 49849
County: Marquette	Township: N	ichigamme
Township: 50N Range: 2	9W Section Number: 1	2
First Quarter Section: NW	Second Quarter Section: NE	Additional Quarter Sections
Latitude: 46° 44' 55" N	Longitude : 87° 53' 43" W	·
FACILITY TYPE Municipal (Sanitary Only) Industrial X Comme If Municipal, population served	_Municipal (w/ Sanitary and Indust ercial	rial Wastewater Inputs)
CERTIFIED OPERATOR (NOT REQ A Certified Operator is required by Se Name: Todd Macco	ection 3110 (1) of Part 31 of Act 45	
Street Address: 6510 Triple A	Road	
City: Michigamme	State: MI	Zip Code: 49861
Telephone No.: 906-662-0080	x108	

7. FOR R	JLE 2215, 2216 AND 2218 A	UTHORIZATIONS ONLY	·.	
PLEAS	E INDICATE WHERE THE (COMPLIANCE MONITOR	RING REPORT FORMS	S SHOULD BE SENT
NAME: Kr	isten Mariuzza			
STREET A	DDRESS: 504 Spruce Stre	et		
CITY: Ish	peming	STATE: MI	ZIP CODE: 4	9849
Rul Rul Rul Rul Rul	RIZATION REQUESTED: e 2210(y), Site Specific Exen e 2211, Notification e 2213, Notification with Cert e 2215, General Permit, Cert e 2216, Specific Discharges e 2218, Discharge Permit	ification ificate of Coverage		_REISSUANCE _REISSUANCE _REISSUANCE _REISSUANCE _REISSUANCE _REISSUANCE
AUTHORIZ AUTHORIZ If the curre	nt authorization is a permit, R	THE PERMIT/EXEMPTION	ON NUMBER OF THE	CURRENT
	just 26, 1999, the number is:	Dannik Bula 2015 tha nu	mhar ia	м <u>GW1810162</u> мG
	nt authorization is a General nt authorization is a site spec	•		MG
	r to August 26, 1999, the nun		(y), or was	GWE
If the curre	nt authorization is a notification	on, Rule 2211, the numbe	r is:	GWN
If the curre	nt authorization is a notification	on/certification, Rule 2213	, the number is:	GWC
This inform	Y STANDARD INDUSTRIAL ation is available through the eb address: www.osha.gov	US Department of Labor	CODE: <u>1021</u> , , Office of Safety and I	Heath Administration, at the
10. SITE M Provide SITE MA	two black and white 8 1/2" X	11" maps drawn to scale	that show the following	j :
b) To	charge location in relation to wnship and county name. rth arrow orientation.	property boundaries on a	topographic map.	
SITE MA	AP 2 - All sites must include i	tem a, include items b-e a	is necessary.	
a. Cu b. Mo c. Pol d. Su	rrent and proposed treatment nitoring wells on site and on able wells on site and on adjud face waters, including wetlar tance between multiple dispo	t units and discharge area adjacent properties. acent properties. ids, lakes, rivers, streams	as and distance to prop	
ATTACH	I SITE MAP TO THIS APPLI	CATION FORM – See Ap	ppendix A	

flows such as sanita substances are add should show daily a treatment units. Ple	IAGRAM ½ x 11 diagram showing water usage at the facility, from s ary, process water, etc. Please also indicate where in the ded to the waste stream for which this authorization is being average flow rates at influent, intake and discharge points a ease use actual measurements whenever possible. er balance is attached – See Appendix B	system additives or other ig sought. The water balance
Are all parts of the t fields) located on pr See Note 1 IF NO, ATTACH TH	REATMENT SYSTEM AND DISPOSAL AREA treatment system and discharge areas (e.g. treatment platoperty owned by the applicant? Yes No _X No _X OPY OF THE WRITTEN PERMISSION TO DISCHARGE (R.	
Are there any know	REATMENT SYSTEM TO A KNOWN SOURCE OF GROU on groundwater contamination sites within 1/4 mile of your o	
Yes N	lo_X Unknown	
	O THE APPLICATION FORM A DESCRIPTION OF THE IBEING REMEDIATED AT THE SITE.	LOCATION AND
14. ISOLATION DISTA	NCE	
	2000 800	water supply wells. What is the ALL OTHER AUTHORIZATIONS 200 75 50
Distance to nearest Distance to nearest	Type I, IIa water supply well: > 2,000 ft Type IIb, III water supply well: > 800 ft Domestic water supply well: > 300 ft	
	ERTY OWNERS addresses of all property owners adjacent to the facility, tree. Include properties across roadways.	eatment systems and
ATTACH ANY ADDI	ITIONAL NAMES AND ADDRESSES TO THE APPLICAT	TON FORM.
NAME: See Note 2	COMPLETE MAILING ADDRESS	S
If yes, please identify • Approved w	ed in a designated wellhead protection area? Yes	web address:

17. SIGNATORY REQUIREMENT

Pursuant to Rule 2114 of the Part 21 Rules, this application must have an original signature, and be signed by the appropriate representative(s) as follows:

- A. For a corporation, the form must be signed by a principal executive officer of at least the level of Vice-president, or his/her designated representative, if the representative is responsible for the overall operation of the facility from which the discharge described in the permit application (appropriate documentation must be provided to demonstrate the position and responsibility of the designated representative).
- B. For a partnership, the form must be signed by a general partner.
- C. For a sole proprietorship, the form must be signed by the proprietor.
- D. For municipal, state or other public facility, the form must be signed by either a principal executive officer, the mayor, village president, city or village manager or other duly authorized employee.

All signatures submitted to the department must be original signatures, or the application will be returned as incomplete. The details of these requirements are found in Rule 2114.

The department reserves the right to request information in addition to that supplied with this application if necessary to verify statements made by the applicant or for the department to make a determination required by Part 31, Water Resources Protection, Natural Resources and Environmental Protection Act, 1994 PA 451, as amended (Act 451) and/or the Part 22 Rules associated with Part 31.

I certify, under penalty of law, that I have personally examined and am familiar with the information submitted in this document and all attachments. The information being submitted was collected and analyzed in accordance with the Part 22 Rules of Part 31 of Act 451, as amended. Based on my inquiry of those individuals immediately responsible for obtaining the information, I believe that the information is true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment.

Print Name _	ADAM	BUELEY	Title _	PRES	1060	1
Representing	KEMC					
Signature	STORL		Date _	ひいしろ	2	2012

Notes:

- (1) The land in which the water treatment system and discharge area are located are owned by the State of Michigan. KEMC has entered into a surface use lease, No. L-9742, with the State of Michigan Department of Natural Resources.
- (2) Adjacent Property Owners:
 - a. Longyear Realty Corporation, 210 Front Street, Marquette, MI 49855
 - b. Plum Creek Timber Company, Inc., 1 Concourse Parkway NE, Atlanta, GA 30328
 - State of Michigan, Department of Natural Resources Land and Mineral Services, Division, PO Box 30448, Lansing, MI 48909-7948

RULE 323.2218

DISCHARGE PERMITS

TYPE OF TREATED WASTEWATER FOR WHICH THE AUTHORIZATION IS REQUESTED. PLEASE CHECK ALL THAT APPLY
Sanitary sewage Process wastewater Cooling water, greater than 5,000 gallons per day Non-contact cooling without additives, greater than 10,000 gallons per day, source water not approved by department. Non-contact cooling water with additives, greater than 10,000 gallons per day. Other, please describe:
DISCHARGE VOLUME ALL DISCHARGES: Maximum daily discharge: 504,000 gallons per day
Cumulative annual discharge: <u>184,000,000</u> gallons per year
SEASONAL DISCHARGES SHOULD INCLUDE THE FOLLOWING: Discharge period through
IRRIGATION SYSTEMS AND SEEPAGE BEDS UTILIZING SOILS FOR TREATMENT SHOULD INLCUDE THE FOLLOWING: Effluent application rate: 10 gal/sq ft/day Inches per hour Inches per day Inches per week Inches per year
DISCHARGE METHOD Please check the discharge method used:
LAND SURFACE DISPOSALDISPOSAL CODESUBSURFACE DISPOSALDISPOSAL CODESpray IrrigationA1f1Tile FieldA1g1Ridge and FurrowA1f2Injection wellA1g2Flood/Sheet IrrigationA1f3TrenchA1g3DrywellA1g4
Seepage Beds: Slow/Medium Rate A1f4 Rapid Rate A1f5 Other - Please describe:
4. TREATMENT CODES Select and enter the appropriate treatment codes to describe treatment units, i.e., A1b, B2b (see APPENDIX A, Pages 41-44)
Treatment Unit A Treatment Unit B Treatment Unit C Treatment Unit C Treatment Unit D Treatment Unit D Treatment Unit D
Please provide a description of the treatment system indicating how it will produce an effluent that will meet the standards of Rule 2222. See Appendix C.

incl	issuance of current permit, no modifications, Rule 2218(3)(c). The following information must be luded in the application for the reissuance of your current permit. Please check that all items have been luded:
	The discharge consists of the same quantity, effluent characterization, and treatment process as previously permitted. A narrative description of the history of facility compliance with effluent and groundwater permit limits and sampling frequency is included. This item is found Appendix D. An updated site map is included. This item is found Appendix A. The most recent static water levels and groundwater elevations from all wells on site. This item is found Appendix E. A current groundwater contour map is included, with a narrative evaluation of whether changes to the existing groundwater monitoring system are warranted and the rationale for any proposed change. This item is found See Note 3, Appendix F. The most recent groundwater quality results are included from all wells on site. This item is found Appendix G. The most recent effluent quality results are included. This item is found Appendix H.
Please X X X	check that all of the following that apply are included: If permit limits were exceeded, the steps taken to bring the facility into compliance. This item is found Appendix D An evaluation of whether there are general trends in the effluent or groundwater sampling data indicating that the discharge is approaching permit limits. This item is found The discharger has provided the department, within 30 calendar days of completion of construction of the treatment facilities, a certification by an engineer licensed under Act No. 299 of the Public Acts of 1980, as amended, that a quality control and quality assurance program was utilized and that the facilities were built consistent with standard construction practices to comply with the permit and this part. Appendix I

Notes:

(3) No changes to the existing groundwater monitoring system are warranted. All groundwater quality monitoring results and groundwater contours have remained consistent with pre-operational levels.

Requested Revisions to Groundwater Discharge Permit - GW1810162

As discussed during the pre-application meeting on May 24, 2012, the following are the requested modifications to the Eagle Mine Groundwater Discharge Permit (GW1810162).

1. Permit Condition, Part I, 10 (d) "Notification of Changes in Discharge"

KEMC concurs that this requirement provides valuable information to both the Department and mine site operations as a potential indicator of a process issue. Because this is not considered an exceedence of a permit parameter, KEMC requests that the requirement be changed from written notification to verbal notification. The verbal notification would allow all parties to be apprised of the situation without the excess paperwork and time required to both write and review the written notification.

2. Permit Condition, Part I, 4 "Groundwater Monitoring and Limitations"

This permit condition indicates that hydraulically downgradient monitor wells shall not exceed the established limitations (maximum daily limit, MDL). As noted in the Narrative Description of Facility Compliance (Appendix D), monitoring well sampling locations QAL008A, QAL008D and QAL051A have exceeded the MDL for pH and/or vanadium during and prior to operations. A July 2008 letter provided to MDEQ (Appendix D) discussed the elevated parameters identified in the background well data.

Due to several locations having background levels above the existing MDL, KEMC is requesting revised limits to account for baseline levels. Attached are copies of the background pH and vanadium results, as well as monitoring data collected since the start of operations in September 2011. The results include all downgradient well locations as well as upgradient well QAL053A for comparison.

In accordance with the discharge standards outlined in 5(a) of the Michigan Administrative Code R323.2222, Part 22 Groundwater Quality Rules, the concentration of vanadium shall not exceed a concentration half way between the background water quality and the concentration at which the site would be a facility as defined by Part 201. The average background concentration of vanadium for all downgradient wells is $1.4 \,\mu\text{g/L}$ and the Part 201 groundwater, surface water interface criteria is $12 \,\mu\text{g/L}$. Half way between the two values is $6.7 \,\mu\text{g/L}$. Therefore, we are requesting that the maximum daily limit for vanadium be changed from $2.2 \,\mu\text{g/L}$ to $6.7 \,\mu\text{g/L}$ for all downgradient monitoring locations. The historical background levels for vanadium range from $<1.0-3.4 \,\mu\text{g/L}$.

Due to background pH data indicating that all downgradient monitoring locations had background pH levels at or above the MDL, KEMC is requesting a revised maximum pH limit of 10.0. The maximum background level for pH at all downgradient locations ranged from 9.0 to 9.7.

To the second se		Ř	ackground p	H Results -	Background pH Results - Pre-Operations	suc			
				Downgradient Wells	ent Wells				Upgradient Well
i proprio de la companya de la compa	QAL008A	QAL008D	QAL050A	QAL051A	QAL051D	QAL052A	QAL057A	QAL057D	QAL053A
2008 May	9,4	8.8	7.5	1	7.4	8.1	7.8	7.6	8.8
2008 June	6.6	8.7	8.8	į	8.7	8.5	1.6	8.7	8.5
2008 July	9.4	9.3	9.0	i	5.6	8.6	9.6	8.7	5.3
2008 Aug	9.3	8.6	8.8		8.5	8.5	8.8	8.8	8.5
2008 Sept	9.3	8.7	8.5	i	8.5	8.5	1.6	8.3	8.7
2008 Oct	6.4	8.8	0.6	i	8.7	8.6	9.2	8.8	6.0
2009 Feb	6.7	8.9	8.9	i	8.8	8.7	8.7	8.6	1'6
2009 May	8.9	8.7	8.9	į	8.6	8.4	8.6	8.6	8.6
2009 Aug	7.2	8.7	0.6		9.8	8.0	6.0	8.8	9.8
2009 Nov	9.1	8.7	6.8	i	9.8	8.6	9.1	8.8	8.6
2010 Feb	9.1	8.7	8.7	.1	9.8	9.0	6.1	8.9	8.7
2010 May	MM	9.8	8.9	ï	NM	NM	9.6	8.6	8.6
2010 Aug	8.7	8.6	8.9	i	8.4	8.4	8.9	8.3	9.8
2010 Nov	8.9	8.6	8.8		8,4		9.0	8.7	8.4
2011 Feb	9.0	8.2	8.9	i	8.4	ï	9.0	9.8	9.8
2011 May	0.6	8.3	8.9	į	8.3	i	8.6	8.6	8.6
2011 Aug	9.3	8.3	8.6	į	7.9	i	8.7	9.0	9.2° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °
Background MIN	7.2	8.2	7.5	į	7.4	8.0	7.8	7.6	8.4
Background MAX	9.7	9.3	9.0	•	9.5	0.6	9.2	9.0	6.6
Background Mean	9.0	8.7	8.8	i	9.8	8.5	8.9	8.6	8.7
Standard Deviation	0.56	0.25	0.35	i	0.44	0.26	0.34	0.32	0.26
MAX Daily Limit	6.5-9.0	6.5-9.0	6.5-9.0	6.5-9.0	6.5-9.0	6.5-9.0	6.5-9.0	6.5-9.0	6.5-9.0
			pH R	pH Results - Operations	rations				
2011 Nov	9.1	8.7	8.9	i	8.3	NA	8.7	8.3	8.4
2012 Feb	8.8	8.7	8.9	i	8.4	NA	0.6	9.8	8.3
2012 May	8.6	9.8	8.8	9.8	8.5	8.5	8.9	8.6	8.4

Notes:

i=Insufficient water volume for collection of field parameters $NM=Not\ measured$

			Backeround	Vanadium I	Background Vanadium Results - Pre-Onerations	-Operations			
			Ď	owngradient	Downgradient Wells (μg/L)				Upgradient Well (µg/L)
	QAL008A	QAL008D	QAL050A	QAL051A	QAL051D	QAL052A	QAL057A	QAL057D	QAL053A
2008 May	<1.0	2.0	1.4	i	2.6	2.2	<1.0	1.1	1.5
2008 June	1.8	1.9	1,2	1.8	1.4	1.9	<1.0	<1.0	1.4
2008 July	<1.0	1.9	1.5	2.2	1.3	1.2	<1.0	1.1	1.5
2008 Aug	<1.0	1.9	1.2	2.7	1.2	1.5	<1.0	1.0	1.2
2008 Sept	<1.0	2.1	1,4	1.4	1.3	<1.0	<1.0	1.2	1.5
2008 Oct	<1.0	2.0	1.3	2.2	<1.0	1.0	<1.0	1.1	1,3
2009 Feb	<1.0	2.3	1.4	2.0	1.1	1.1	<1.0	1.1	1.5
2009 May	<1.0	1.8	1,4	1.7	<1.0	<1.0	<1.0	1.0	1,4
2009 Aug	<1.0	1.4	<1.0	<1.0	<1.0	1.6	<1.0	<1.0	<1.0
2009 Nov	<1.0	1.9	1.3	2.5	1.8	1.6	<1.0	1.1	1,5
2010 Feb	<1.0	2,1	1.3	Ţ	<1.0	1.2	<1.0	1.0	1.5
2010 May	<1.0	2,1	1,3	1.4	1.1	<1.0	<1.0	<1.0	1.6
2010 Aug	<1.0	2.0	1.3	3.4	1.5	<1.0	0'I>	0.1	1.6
2010 Nov	<1.0	2.1	1,0	2.3	2.7	1.6	<1.0	1.2	1,4
2011 Feb	<1.0	2.1	1,4	2.0	1.2	1.7	<1.0	1.1	1.5
2011 May	<1.0	2.2	1.2	2.3	<1.0	1.2	<1.0	1.0	1,6
2011 Aug	<1.0	1.7	1.2	2.2	<1.0	1.1	<1.0	<1.0	1,4
Background MIN	<1.0	1.4	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Background MAX	1,8	2.3	1.5	3.4	2.7	2.2	<1.0	1.2	1.6
Background Mean	<1.0	2.0	1.3	2.2	1.6	1.5	<1.0	1.1	1.5
Standard Deviation4	0.19	0.21	0.14	0.58	0.53	0.37	0.00	0.07	0.15
MAX Daily Limit	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2
			Var	nadium Resu	Vanadium Results - Operations	ons			
2011 Nov	<1.0	1.9	1.2	2.5	<1.0	1,2	<1.0	<1.0	1.4
2012 Feb	<1.0	2.0	1.4	NA	<1.0	1.4	<1.0	<1.0	1.4
2012 May	<1.0	2,3	1.5	3.3	1.0	1.2	<1.0	1.1	1,6

Average Background calculated from Background Mean. Results reported as <1.0 were assumed to be 1.0 µg/L for this calculation.
 Source: Part 201 Generic Cleanup Criteria and Screening Levels; Groundwater, Surface water Interface Criteria, March 25, 2011

^{3.} As dictated in Part 22 Groundwater Quality, R323.222 5(a) Discharge Standards. This value is calculated at 1/2 way between the background groundwater quality and Part 201 standard.

 $^{^4}$ Results less than reporting limit were assumed to be 1.0 $\mu g/L$ for the standard deviation calculation.

i=Insufficient water volume for collection of field parameters $NA=Not\ Applicable$

Appendix A

Site Maps

NON - POTABLE WATER SUPPLY WELL GROUNDWATER DISCHARGE PERMIT MONITORING LOCATIONS Project View Instrumented for continuous monitoring POTABLE WATER SUPPLY WELL PROPOSED MINE FACILITY Dalo provided by: Konnecott Eagle Minerals, North Jackson Company Projection & Datum: UTM NAD 83 Zone 16N GROUNDWATER QUALITY MONITORING WELL Scale: 1:12,000 Kennecott Eagle Minerals --- HYDROGRAPHY ROAD ◉ (0 @<u><105777.00</u> @ALIDSBA

Figure: XX

2,000 Feet

Appendix B

Water Usage Diagram

Water Balance Flow Sheet – Expected Case Conditions

Appendix C

Treatment Process

Kennecott Eagle Minerals Company

Main Wastewater Treatment Process

A process flow diagram for the main water treatment process is provided in Appendix C. This process will include the following:

- Hydrocarbon removal nutshell filter
- Degassification
- Metals precipitation/sedimentation
- Multimedia filtration
- Ion exchange
- First pass reverse osmosis
- · Second pass reverse osmosis
- Final effluent pH adjustment

Nutshell Filter

Hydrocarbon removal is the first treatment process and is only utilized if required. An in-line oil monitor measures the hydrocarbon content as water is pumped from the contact water basin to the WTP. If hydrocarbon content of the influent is measured above 0.8 mg/L, the water is re-directed through the nutshell filter. Influent with hydrocarbon less than 0.8 mg/L is routed to the degassifier tower.

The filtering media is comprised of granular roasted walnut and pecan shells. As the influent moves through the nutshell filter, the hydrocarbons adsorb to the shells, removing it from the water. Once the adsorption capacity of the shells is diminished the nutshell filter is backwashed and the shells are regenerated.

Degassifier Tower

The next step in the treatment process is degassification of the influent to allow for more optimal treatment in the Multiflo TM Clarifier. Influent is delivered to the top of the degassifier tower and flows down to the clearwell storage tank which has a capacity of 2,500 gallons. As the water flows down, air is forced up through the same tower which results in the removal of carbon dioxide. Water is pumped to the Multiflo TM Clarifier from the degassifier clear well tank.

Multiflo TM Clarifier

This step of the process involves metals precipitation, softening, and separation through sedimentation and results in the removal of the majority of the metals and hardness present in the wastewater. This process also serves to remove a portion of the suspended solids present in the wastewater.

Hydroxide precipitation is used to precipitate out metals present in the wastewater. During hydroxide precipitation, metals removal occurs by adjusting the pH of the wastewater to the point where metals exhibit minimum solubility and precipitate as metal hydroxides. These precipitates can then be separated from the wastewater through sedimentation. The effectiveness of hydroxide precipitation is dependent on wastewater characteristics such as pH, the form of the metal ions present, and the presence of complexing agents. The extent of metals removed is limited by the solubility of the metal hydroxides generated. Although minimum solubility for most metal hydroxides occur in the pH range of 9 to 11, this process is operated at a pH of 10.5 to 11 in order to satisfy downstream requirements.

Lime (Ca(OH)₂) and sodium hydroxide (NaOH) are used in the precipitation process. In the hydroxide precipitation process, wastewater is mixed with sodium hydroxide, ferric iron, and previously precipitated sludge in a reaction tank. Rapid mixing in the tank promotes the crystallization and sedimentation of the metal hydroxides. The wastewater and precipitated solids flow into the second reactor where soda ash is added. The mixing of the soda ash with the wastewater allows the remaining calcium in the wastewater to precipitate, further softening the water. The wastewater then flows into a slowly mixed vessel where polymer is added. The polymer allows the solids to flocculate to promote settling and aid in dewatering. The water then flows into an inclined plate separator where the suspended solids are separated by gravity from the water. Solids are pumped from the clarifier to the solids handling process for dewatering (i.e. filter press). Water from the clarifier is routed to the downstream multimedia filters.

Multimedia Filtration System (MMF)

Effluent from the Multiflo TM Clarifier is pumped to the multimedia filters whose primary function is to remove suspended solids that did not settle in the clarifier. The system consists of three identical filter units and the utility water storage tank. Two units are in service and one is on standby. The filters are capable of removing debris down to the range of 5 to 10 micron. Water flows down through the filter bed which consists of three distinct layers of media. The top layer (anthracite #1) will retain particles in the 50 micron and larger range. The second layer (filter sand .45 - .55mm) will retain particles in the 40 micron and larger range; and the third layer (Garnet #30) will retain particles in the 5 to 10 micron range. The two lower layers of garnet and the quartz gravel serve as a support bed to prevent loss of the fine garnet out of the service lines. Once the water has been filtered, it is sent to the utility water storage tank. Water from this tank is used as supply water for underground operations as well as operational uses within the WTP. Once the utility tank is full, the remaining water is sent to the next step in the treatment process.

Weak Acid Cation Exchanger (WAC)

The ion exchange system is provided to further reduce the level of heavy metals and inorganic salt cations remaining in the water. Reduction of these wastewater constituents will allow the operation of the downstream RO system at a higher level of recovery and minimize the RO concentrate flow to the evaporator/crystallizer process which in turn reduces the likelihood of membrane fouling.

The system includes multiple ion exchange columns, an ion exchange regeneration/backwash system, and instrumentation for monitoring and control purposes. Three ion exchange columns are provided with each column being designed to handle 50% of the design peak flow. The columns are operated in parallel. This configuration allows continued operation in the event that either of the columns is off-line for regeneration, maintenance, or repairs.

Double-Pass Reverse Osmosis

This system provides polishing of the effluent with respect to heavy metals and also removes other contaminants not removed by the metals precipitation/sedimentation system such as sodium, chlorides, and sulfate.

Reverse osmosis (RO) is a treatment process which uses semi-permeable membranes to remove inorganic and organic constituents from wastewater. RO separation of high molecular weight molecules, such as organic compounds, is achieved through physical "straining". RO separation of low molecular weight wastewater constituents such as metals and inorganic salts is achieved through electro-chemical interactions between the membrane surface and the ions in solution. The basic principles are as follows; water is passed laterally across the membrane surface and is driven by applied hydrostatic pressure through the membrane. Constituents present in the wastewater are rejected at the membrane surface and become concentrated in the "reject" or "concentrate" stream while purified "permeate" or "product water" passes through the membrane. This process separates the membrane system feed stream into two new aqueous streams, the purified "permeate" or "product water" stream and the concentrated "reject" or "concentrate" stream.

Water treated by the ion exchange system is pumped from the soft water storage tank to the two pass reverse osmosis system. The first pass consists of three RO process trains, each of which has a 5, 2, 1 array. Each train is designed for 50% of the peak design flow rate. This configuration allows for continued operation of the RO system in the event that one of the trains is off-line for maintenance. First pass permeate is sent to the inter-pass storage tank and concentrate is sent to the neutralization storage tank.

The first pass permeate is sent from the inter-pass storage tank to the second pass RO system. The second pass system is provided for additional removal of contaminants. The second pass RO system also consists of three RO process trains set-up in a 3, 2, 1 array. As with the first pass system, two trains will be operating in parallel with the third on stand-by. Second pass permeate is sent to the product water storage tank and concentrate is sent to the soft water tank.

Product Water System

A product water storage tank is provided for short term storage of the final effluent. Effluent stored in the tank will be continuously monitored for pH and conductivity to ensure it is meeting operational limits. If necessary, pH is adjusted using hydrochloric acid.

The product water system distributes water to the crystallizers for use as a heat exchanger fluid and is also used as dilution water for sodium hydroxide and hydrochloric acid for WAC regeneration. The remaining water is discharged to the treated water infiltration system (TWIS).

Treated Water Infiltration System (TWIS)

The treated effluent will be discharged to groundwater through the TWIS. The TWIS is a rapid infiltration system that is located in highly permeable soil. The treated effluent will be applied to the TWIS through five separate infiltration cells. This design allows for at least one cell to be out of service for resting and/or maintenance while the other cells are being loaded. The cells being loaded are rotated by the WTP operators on a routine basis.

Because of the high water quality being discharged from the WTP, the land application system doesn't require any further water treatment from on-site soils or vegetation. Soil attenuation and vegetative uptake of contaminants is not part of the treatment process.

Additional Treatment

Filter Press

The solids slurry generated in the Multiflo TM Clarifier is routed to the filter press to be dewatered. The concentrated slurry, once pumped through the press, is returned to the process tank. Suspended solids are retained by the woven filter cloth. Solids gradually build up inside the filter chamber under pump pressure. Once the chamber's maximum capacity is reached, the dewatered filter cake is dumped into a dedicated roll-off bin, with solids being disposed of in accordance with applicable regulations.

Evaporator/Crystallizer

The evaporator/crystallizer system is used to remove water from the RO concentrate and neutralized water from the ion exchange system. The initial step in this process is to neutralize the concentrate and neutralization waste water in one of the two 22,000 gallon neutralization tanks.

The evaporator/crystallizer system removes water from the liquid waste solutions. The objective is to generate a solid waste that is easily managed in accordance with applicable regulations.

The water removed from the waste solutions during the evaporation process is initially in vapor form. The vapor forms a liquid distillate through a condensation process within the unit. The resulting distilled water is routed to the product water storage tank where it is combined with the treated effluent and discharged. After pH adjustment, the distillate meets applicable groundwater discharge standards. The remaining concentrate from the evaporators is diverted to the concentrate storage tank which is routed to the crystallizer. The crystallizer is designed to reduce the brine concentrate to a dry solid. Solid crystals

are formed from the liquid concentrate under a specific temperature and vacuum pressure. All recovered solids are managed and disposed in accordance with applicable regulations.

Breakpoint Chlorination

Breakpoint chlorination may be used periodically when elevated ammonia levels are present in the influent. In this process, chlorine (i.e. sodium hypochlorite), is added to the influent prior to degasification (Note: The nutshell filter will not be used during periods in which breakpoint chlorination is required). The chlorine oxidizes the ammonia through a progression of oxidation products including monochloroamine, dichloroamine, nitrogen trichloride, and nitrogen gas. The point at which nearly all ammonia in the influent is oxidized to nitrogen gas, and additional application of chlorine results in free chlorine residual in the influent, is referred to as breakpoint chlorination.

When breakpoint chlorination is required, the influent from the contact water basins will be immediately routed to the bottom of the reaction tank where sodium hypochlorite will be added as the chlorine source. The tank would have mixing and a contact time of approximately 39 minutes. After this time period, the influent overflows to the degassifier clear well through a drain connection. In addition, sodium bisulfite is added before the WACs, as required, to remove any residual chlorine present in the wastewater. Removal of residual chlorine is required to protect the downstream RO membranes and final product water (discharge).

Appendix D

Description of Facility Compliance

Kennecott Eagle Minerals (Rio Tinto Eagle Mine) Narrative Description of Facility Compliance

Groundwater Monitoring Wells

Beginning in 2008, the groundwater monitoring locations listed in Table 1 below have been monitored on a quarterly basis as required by KEMC's current groundwater discharge permit (GW1810162). Quarterly groundwater sampling is conducted by North Jackson Company during the months of February, May, August, and November and sample analysis completed by TriMatrix Laboratories located in Grand Rapids, MI. All samples have been collected, analyzed, and reviewed in accordance with methods approved by the MDEQ in the Field Monitoring and Sample Collection Standard Operating Procedures Manual, Supplemental Sampling and Analysis Plan for Waste Treatment and Infiltration System Operations, and the Quality Assurance Project Plan.

Table 1. Groundwater Discharge Permit Monitoring Wells

Hydraulically up-gradient & side gradient wells	Hydraulically down gradient wells
QAL026A	QAL008A
QAL026D	QAL008D
QAL029A	QAL050A
QAL029D	QAL051A
QAL053A	QAL051D
QAL055A	QAL052A
QAL056A	QAL057A
	QAL057D

All results are reported to the MDEQ on or before 30 days following the month the sampling occurred using the eDMR reporting system. Hardcopies of self-monitoring data are also submitted to the MDEQ within 30 days of sampling period.

The monitoring wells hydraulically down gradient of the Treated Water Infiltration System (TWIS) have permit assigned maximum daily limits (MDL). Since the start of operations in September 2011, all monitoring well sampling locations have been found in compliance with assigned MDLs or have corresponded with existing background data. Data from QAL008A, QAL008D and QAL051A have indicated some occurrences of elevated vanadium and pH both during and prior to operations. MDEQ was notified in July 2008 of these elevated parameters in the background data (letter attached).

Effluent Discharge

Effluent discharged to the TWIS is sampled by WTP operators and analyzed by TriMatrix Laboratories. On June 19, 2012 KEMC successfully completed the requirements set forth in Part I, 1, Initial Effluent Limitations, as noted in KEMC's Groundwater Discharge Permit (GW1810162). During this period samples were collected on a daily basis when discharging. Upon completion of the initial 90-day sampling period, samples are now collected on a weekly/monthly basis dependent upon the parameter as dictated in Part I, 2, Final Effluent Limitations of the GWDP Permit.

All effluent results are reported to the MDEQ on or before 30 days following each month of the authorized discharge period(s) using the eDMR reporting system. Hardcopies of self-monitoring data are also submitted to the MDEQ within 30 days of sampling period.

The effluent discharge was found to be in compliance with all established limits with the exception of BOD in the effluent discharged from November 30 – December 3, 2011. Upon receipt of the laboratory results, MDEQ was notified and an extensive review of the system was initiated. The direct source of the BOD was determined to be a drum of citric acid, which was utilized for pH adjustment of the product water following the final pass of reverse osmosis and prior to discharge. A letter describing the analyses and source determination was submitted to MDEQ on February 21, 2012. The citric acid has been replaced with hydrochloric acid. Since this change was implemented all results have been well within established limits for BOD.

The primary source of water to the WTP is storm water. Due to lack of storm water during the winter months, the WTP operated in recirculation mode until March 6, 2012 when water was once again discharged.

ZO III

Kennecott Eagle Minerals Victoria Peacey Environmental Affairs Manager 504 Spruce Street Ishpeming, Michigan 49849 (906) 486-1257

October 17, 2008

Ms. Jeanette Bailey Permit Processor – Groundwater Permits Unit Michigan Department of Environmental Quality 525 W Allegan St. Lansing, MI 48909

Subject:

Kennecott Eagle Mineral Company (KEMC), Marquette County, Michigan

Groundwater Discharge Permit GW1810162, Part I Section 5

Schedule of Compliance Notification

Dear Ms. Bailey:

In a letter dated July 2, 2008 KEMC submitted a copy of the monitor well installation report specified in Part I, Section 5f of groundwater discharge permit GW1810162. Please find attached a copy of the monitor well sampling results that establish background water quality.

Results of the background sampling indicate that parameters for all wells meet already established permit compliance limits, with the exception of pH and vanadium. Five of 14 wells have statistically significant representative value (average) pH that exceeds the upper compliance limit of 9.0 standard pH units. Three additional wells have pH exceeding the upper compliance limit in their respective 95% upper confidence limit about the average. The slightly alkaline conditions of groundwater in this area were previously documented and reported in the permit application. The representative concentration of vanadium exceeds the permit compliance limit (2.2 ug/l) in one well, and the 95% upper confidence limit about the average exceeds this value in another well.

As per guidesheet I referenced by Part 22 Rules of Part 31 of the Natural Resources and Environmental Protection Act, 1994 PA 451, background shall be established by sampling the approved wells once every other month for one year. Part I, Section 5g of GW1810162 specifies that results shall be submitted 180 days following installation of monitor wells. In an effort to capture as much temporal variability, yet maintain the tighter time frame for submittal of the results, KEMC condensed the recommended 6 sample events into monthly events (rather than bimonthly) over 180 days in order to meet permit requirements.

In a letter dated April 17, 2008 KEMC specified that wells were installed and developed by April 5th, 2008. According to Part I, Section 5f, results should be submitted within 180 days of installation, by October 3rd, 2008. All sampling was complete within this timeframe, however the completion of the laboratory analysis and reporting, quality assurance review, and statistical analyses, required an

additional two weeks to complete the October event. However as per Part II, Section 4 of GW1810162, this letter also serves as a written notification indicating whether the particular requirement was accomplished within 14 days of the schedule of compliance (due by October 17, 2008).

KEMC appreciates the MDEQ's understanding in this matter. Should you wish to discuss these issues further, or if you have any question please contact me at (906) 486-1257.

Sincerely,

Victoria Peacey

Environmental Affairs Manager

cc: Joe Maki, Michigan Department of Environmental Quality

Jim Janiczek, Michigan department of Environmental Quality

Gene Smary, Warner, Norcross & Judd, LLP

Dennis Donohue, Warner, Norcross & Judd, LLP

Dan Wiitala, North Jackson Company

Steve Donohue, Foth

Vicky Peacey, Kennecott Eagle Minerals Company

Appendix E

Static Water Levels and Groundwater Elevations

Eagle Mine Static Water Levels and Groundwater Elevations

Location	Event Date	Groundwater Elevation (ft MSL)	Depth to Water (ft)	Total Well Depth (ft)
	Hydraulica	lly Upgradient M	lonitoring W	ells
QAL053A	5/16/12	1385.86	78.62	91
1	Iydraulicall	y Side Gradient l	Monitoring V	Vells
QAL026A	5/16/12	1416.17	44.84	48
QAL026D	5/16/12	1409.16	52.13	83
QAL029A	5/16/12	1416.53	39.32	47
QAL029D	5/16/12	1406.24	49.51	62
QAL055A	5/16/12	1361.99	106.66	117
QAL056A	5/16/12	1391.80	78.55	92
H	[ydraulically	y Downgradient l	Monitoring V	Vells
QAL008A	5/16/12	1390.32	83.98	99
QAL008D	5/16/12	1353,23	121.50	129
QAL050A	5/16/12	1361.00	111.08	123
QAL051A	5/16/12	1363,48	105.96	109
QAL051D	5/16/12	1363.43	106.72	120
QAL052A	5/16/12	1351.29	119.38	126
QAL057A	5/16/12	1359.72	113.57	123
QAL057D	5/16/12	1359.79	114.40	135

Appendix F

Groundwater Contour Maps

Appendix G

Groundwater Quality Results

Eagle Mine Groundwater Quality Data QAL008A

	Q1XL50002		2nd Otr 2012
		Maximum	210 Qtr 2012
Parameter	Unit	Dally Limit	
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			5/1/2012
Field			
D.O.1	ppm	na	12
ORP	mV	na	235
pН	SU	9.0	8.6
Specific Conductance	μmhos/cm	na	75
Temperature	°C	na	8.0
Turbidity	NTU	na	<1
Water Elevation	ft MSL	na	1390.26
Metals			
Antimony	μg/L	5.0	<1.0
Arsenic	μg/L	6.0	<1.0
Barium	μg/L	1,000	<5.0
Beryllium	μg/L	3.0	<1.0
Boron	μg/L	285	<20
Cadmium	μg/L	3.0	<0.20 e
Chromium	μg/L	52	<1.0
Cobalt	μg/L	23	<15
Copper	μg/L	10	<1.0
Iron	μg/L	na	<20
Lead	μg/L	3.0	<1.0
Lithium	μg/L	88	<8.0
Manganese	μg/L	50	<5.0
Mercury	μg/L	na	< 0.500
Molybdenum	μg/L	22	<10
Nickel	μg/L	57	<2.0
Selenium	μg/L	5.0	<1.0
Silver	μg/L	0.4	<0.20
Strontium	μg/L	2,300	14 e
Thallium	μg/L	1.0	<1.0
Vanadium	μg/L	2.2	<1.0
Zinc	μg/L	1,200	<10
Major Anions	μβ/Ε	1,200	1
Alkalinity, Bicarbonate	mg/L	na	34
Chloride	mg/L	250	1.3
		10	0.025 a
Nitrogen, Ammonia Nitrogen, Nitrate	mg/L	10	0.023 a
Nitrogen, Nitrite	mg/L mg/L		<0.050
		na	
Phosphorus, Total	mg/L	na	0.0215 e 2.1
Sulfate	mg/L	250	4.1
Major Cations			10
Calcium	mg/L	na	10
Magnesium	mg/L	na	1.6
Potassium	mg/L	na	0.50
Sodium	mg/L	120	0.53
General			
Hardness	mg/L	na	32

Eagle Mine Groundwater Quality Data QAL008D

Pärameter	Unit	Maximum Daily Limit	2nd(Om 2012 51/2012
Field			
D.O.1	ppm	na	5.9
ORP	mV	na	92
рН	SU	9.0	8.6
Specific Conductance	μmhos/cm	na	100
Temperature	°C	na	7.8
Turbidity	NTU	na	<1
Water Elevation	ft MSL	na	1353.63
Metals			
Antimony	μg/L	5.0	<1.0
Arsenic	μg/L	6.0	4.2
Barium	μg/L	1,000	6.8
Beryllium	μg/L	3.0	<1.0
Boron	μg/L	285	<20
Cadmium	μg/L	3.0	<0.20 e
Chromium	μg/L	52	1.0
Cobalt	μg/L	23	<15
Copper	μg/L	10	<1.0
Iron	μg/L	na	<20
Lead	μg/L	3.0	<1.0
Lithium	μg/L	88	<8.0
Manganese	μg/L	50	<5.0
Mercury	μg/L	na	<0.500
Molybdenum	μg/L	22	<10
Nickel	μg/L	57	<2.0
Selenium	μg/L	5.0	<1.0
Silver	μg/L	0.4	<0.20
Strontium	μg/L	2,300	43 e
Thallium	μg/L	1.0	<1.0
Vanadium	μg/L	2.2	2.3
Zinc	μg/L	1,200	<10
Major Anions			
Alkalinity, Bicarbonate	mg/L	na	48
Chloride	mg/L	250	<1.0
Nitrogen, Ammonia	mg/L	10	<0.020 a
Nitrogen, Nitrate	mg/L	10	0.089
Nitrogen, Nitrite	mg/L	na	<0.050
Phosphorus, Total	mg/L	na	0.0222 e
Sulfate	mg/L	250	4.7
Major Cations			
Calcium	mg/L	na	12
Magnesium	mg/L	na	2.7
Potassium	mg/L	na	0.78
Sodium	mg/L	120	1.1
General			
Hardness	mg/L	na	41

Eagle Mine Groundwater Quality Data QAL026A

Parameter	Unit	Maximum Dally Limit	2nd Qir 2012 5/1/2012
Field		6	
D.O.1	ppm	na	12
ORP	mV	na	134
pН	SU	na	7.3
Specific Conductance	μmhos/cm	na	90
Temperature	°C	na	9.4
Turbidity	NTU	na	<1
Water Elevation	ft MSL	na	1416.17
Metals			
Antimony	μg/L	na	<1.0
Arsenic	μg/L	na	<1.0
Barium	μg/L	na	5.4
Beryllium	μg/L	na	<1.0
Boron	μg/L	na	<20
Cadmium	μg/L	na	<0.20 e
Chromium	μg/L	na	1.2
Cobalt	μg/L	na	<15
Copper	μg/L	na	1.9
Iron	μg/L	na	250
Lead	μg/L	na	<1.0
Lithium	μg/L	na	<8.0
Manganese	μg/L	na	<5.0
Mercury	μg/L	na	0.530
Molybdenum	μg/L	na	<10
Nickel	μg/L	na	<2.0
Selenium	μg/L	na	<1.0
Silver	μg/L	na	<0.20
Strontium	μg/L	na	20 e
Thallium	μg/L	na	<1.0
Vanadium	μg/L	na	<1.0
Zine	μg/L	na	15
Major Anions			6
Alkalinity, Bicarbonate	mg/L	na	50
Chloride	mg/L	na	<1.0
Nitrogen, Ammonia	mg/L	na	<0.020 a
Nitrogen, Nitrate	mg/L	na	0.49
Nitrogen, Nitrite	mg/L	na	<0.050
Phosphorus, Total	mg/L	na	0.0141 e
Sulfate	mg/L	na	3.3
Major Cations			
Calcium	mg/L	na	8.5
Magnesium	mg/L	na	1.5
Potassium	mg/L	na	0.79
Sodium	mg/L	na	1.1
General			
Hardness	mg/L	na	27

Eagle Mine Groundwater Quality Data QAL026D

Parameter	Unit	Maximum Dally Limit	2nd Qir 2012 5/1/2012
Field			
D.O.1	ppm	na	11
ORP	mV	na	96
рН	SU	na	8.9
Specific Conductance	μmhos/cm	na	62
Temperature	°C	na	7.5
Turbidity	NTU	na	<1
Water Elevation	ft MSL	na	1409.10
Metals			
Antimony	μg/L	na	<1.0
Arsenic	μg/L	na	<1.0
Barium	μg/L	na	. <5.0
Beryllium	μg/L	na	<1.0
Boron	μg/L	na	<20
Cadmium	μg/L	na	<0.20 e
Chromium	μg/L	na	<1.0
Cobalt	μg/L	na	<15
Copper	μg/L	na	<1.0
Iron	μg/L	na	<20
Lead	μg/L	na	<1.0
Lithium	μg/L	na	<8.0
Manganese	μg/L	na	<5.0
Mercury	μg/L	na	<0.500
Molybdenum	μg/L	na	<10
Nickel	μg/L	na	<2.0
Selenium	μg/L	na	<1.0
Silver	μg/L	na	<0.20
Strontium	μg/L	na	10 e
Thallium	μg/L	na	<1.0
Vanadium	μg/L	na	<1.0
Zinc	μg/L	na	<10
Major Anions			
Alkalinity, Bicarbonate	mg/L	na	27
Chloride	mg/L	na	<1.0
Nitrogen, Ammonia	mg/L	na	<0.020 a
Nitrogen, Nitrate	mg/L	na	0.098
Nitrogen, Nitrite	mg/L	na	<0.050
Phosphorus, Total	mg/L	na	0.0230 е
Sulfate	mg/L	na	2.0
Major Cations			
Calcium	mg/L	na	8.2
Magnesium	mg/L	na	1.2
Potassium	mg/L	na	< 0.50
Sodium	mg/L	na	0.57
General			
Hardness	mg/L	na	25

Eagle Mine Groundwater Quality Data QAL029A

Parameter .	Unit	Maximum Dally Islimit	2nd Otc 2012 5/1/2012
Polis		Daily Chine	V(11.2V)12
Field D.O.1		na	11
ORP	ppm mV	na	145
pH2	SU	na	6.6
Specific Conductance	μmhos/cm	na	29
Temperature	°C	na	10
Turbidity	NTU	na	11
Water Elevation	ft MSL	na	1416.57
Metals	7, 1100		
Antimony	μg/L	na	<1.0
Arsenic	μg/L	na	<1.0
Barium	μg/L	na	8.2
Beryllium	μg/L	na	<1.0
Boron	μg/L	na	<20
Cadmium	μg/L	na	<0.20 e
Chromium	μg/L	na	<1.0
Cobalt	μg/L	na	<15
Copper	μg/L	na	<1.0
Iron	μg/L	na	<20
Lead	μg/L	na	<1.0
Lithium	μg/L	na	<8.0
Manganese	μg/L	na	5.1
Mercury	μg/L	na	<0.500
Molybdenum	μg/L	na	<10
Nickel	μg/L	na	<2.0
Selenium	μg/L	na	<1.0
Silver	μg/L	na	<0.20
Strontium	μg/L	na	14 e
Thallium	μg/L	na	<1.0
Vanadium	μg/L	na	<1.0
Zinc	μg/L	na	<10
Major Anions			
Alkalinity, Bicarbonate	mg/L	na	<20
Chloride	mg/L	na	<1.0
Nitrogen, Ammonia	mg/L	na	<0.020 a
Nitrogen, Nitrate	mg/L	na	0.13
Nitrogen, Nitrite	mg/L	na	<0.050
Phosphorus, Total	mg/L	na	0.0348 e
Sulfate	mg/L	na	2.4
Major Cations			
Calcium	mg/L	na	3.1
Magnesium	mg/L	na	0.50
Potassium	mg/L	na	0.74
Sodium	mg/L	na	0.50
General			
Hardness	mg/L	na	10

Eagle Mine Groundwater Quality Data QAL029D

Parameter	Unit	Maximum Daily Limit	2nd Off 2012 5/1/2012
Field		Daily Chille	200
D.O.1	nnm	na	11
ORP	ppm mV	na	287
pH2	SU	na	6.4
Specific Conductance	μmhos/cm	na	50
Temperature	°C .	na	7.6
Turbidity	NTU	na	3
Water Elevation	ft MSL	na	1406.22
Metals	*****		
Antimony	μg/L	na	<1.0
Arsenic	μg/L	na	<1.0
Barium	μg/L	na	<5.0
Beryllium	μg/L	na	<1.0
Boron	μg/L	na	<20
Cadmium	μg/L	na	<0.20 e
Chromium	μg/L	na	1.2
Cobalt	μg/L	na	<15
Copper	μg/L	na	<1.0
Iron	μg/L	na	39
Lead	μg/L	na	<1.0
Lithium	μg/L	na	<8.0
Manganese	μg/L	na	<5.0
Mercury	μg/L	na	0.632
Molybdenum	μg/L	na	<10
Nickel	μg/L	na	<2,0
Selenium	μg/L	na	<1.0
Silver	μg/L	na	<0.20
Strontium	μg/L	na	11 e
Thallium	μg/L	na	<1.0
Vanadium	μg/L	na	<1.0
Zinc	μg/L	na	<10
Major Anions			
Alkalinity, Bicarbonate	mg/L	na	22
Chloride	mg/L	na	<1.0
Nitrogen, Ammonia	mg/L	na	<0.020 a
Nitrogen, Nitrate	mg/L	na	0.23
Nitrogen, Nitrite	mg/L	na	<0.050
Phosphorus, Total	mg/L	na	0.0180 е
Sulfate	mg/L	na	2.8
Major Cations			
Calcium	mg/L	na	4.7
Magnesium	mg/L	na	2.0
Potassium	mg/L	na	0.58
Sodium	mg/L	na	0.68
General:			
Hardness	mg/L	na	20

Eagle Mine Groundwater Quality Data QAL050A

Parameter	Unit	Maximum Daily Limit	2nd Qir 2012 5/1/2012
Rield		Pany Entite	V/312V12
D.O.1	ppm	na	10
ORP	mV	na	88
pH	SU	9.0	8.8
Specific Conductance	μmhos/cm	na	84
Temperature	°C	na	7.2
Turbidity	NTU	na	<1
Water Elevation	ft MSL	na	1361.33
Metals			
Antimony	μg/L	5.0	<1.0
Arsenic	μg/L	6.0	<1.0
Barium	μg/L	1,000	<5.0
Beryllium	μg/L	3.0	<1.0
Boron	μg/L	285	<20
Cadmium	μg/L	3.0	<0.20 e
Chromium	μg/L	52	<1.0
Cobalt	μg/L	23	<15
Copper	μg/L	10	<1.0
Iron	μg/L	na	<20
Lead	μg/L	3.0	<1.0
Lithium	μg/L	88	<8.0
Manganese	μg/L	50	<5.0
Mercury	μg/L	na	< 0.500
Molybdenum	μg/L	22	<10
Nickel	μg/L	57	<2.0
Selenium	μg/L	5.0	<1.0
Silver	μg/L	0.4	< 0.20
Strontium	μg/L	2,300	21 e
Thallium	μg/L	1.0	<1.0
Vanadium	μg/L	2.2	1,5
Zinc	μg/L	1,200	<10
Major Anions			
Alkalinity, Bicarbonate	mg/L	na	38
Chloride	mg/L	250	<1.0
Nitrogen, Ammonia	mg/L	10	<0.020 a
Nitrogen, Nitrate	mg/L	10	0.10
Nitrogen, Nitrite	mg/L	na	<0.050
Phosphorus, Total	mg/L	na	0.0206 е
Sulfate	mg/L	250	2.9
Major Cations			
Calcium	mg/L	na	11
Magnesium	mg/L	na	2.1
Potassium	mg/L	na	0.54
Sodium	mg/L	120	0.80
General -			
Hardness	mg/L	na	36

Eagle Mine Groundwater Quality Data QAL051A

Parameter	Unit	Maximum Daily Limit	2nd Oir 2012 5/1/2012
Field	reaction for the		A STATE OF THE STA
D,O,1	ppm	na	9.6
ORP	mV	na	129
pH	SU	9.0	8.6
Specific Conductance	μmhos/cm	na	87
Temperature	°C	na	10
Turbidity	NTU	na	<1
Water Elevation	ft MSL	na	1363.76
Metals			100000000000000000000000000000000000000
Antimony	μg/L	5.0	<1.0
Arsenic	μg/L	6.0	1.3
Barium	μg/L	1,000	6.6
Beryllium	μg/L	3.0	<1.0
Boron	μg/L	285	<20
Cadmium	μg/L	3.0	<0.20 e
Chromium	μg/L	52	1.1
Cobalt	μg/L	23	<15
Copper	μg/L	10	1.2
Iron	μg/L	na	100
Lead	μg/L	3.0	<1.0
Lithium	μg/L	88	<8.0
Manganese	μg/L	50	<5.0
Mercury	μg/L	na	<0.500
Molybdemum	μg/L	22	<10
Nickel	μg/L	57	<2.0
Selenium	μg/L	5.0	<1.0
Silver	μg/L	0.4	<0.20
Strontium	μg/L	2,300	21 e
Thallium	μg/L	1.0	<1.0
Vanadium	μg/L	2.2	3.3
Zinc	μg/L	1,200	<10
Major Anions			
Alkalinity, Bicarbonate	mg/L	na	41
Chloride	mg/L	250	<1.0
Nitrogen, Ammonia	mg/L	10	0.038
Nitrogen, Nitrate	mg/L	10	0.17
Nitrogen, Nitrite	mg/L	na	<0.050
Phosphorus, Total	mg/L	na	0.0272 e
Sulfate	mg/L	250	3.3
Major Cations			
Calcium	mg/L	na	11
Magnesium	mg/L	na	1.9
Potassium	mg/L	na	0.77
Sodium	mg/L	120	1.1
General			100
Hardness	mg/L	na	35

Eagle Mine Groundwater Quality Data QAL051D

Parameter	Unit	Maximum Dally Limit	2nd Qtr 2012 5/1/2012
Bield	200E 2	Daily Emile	3)1/2012
D.O.1		no	0.3
ORP	ppm mV	na na	-85
	SU	9.0	8.5
pH	μmhos/cm		129
Specific Conductance	°C	na na	8.2
Temperature Turbidity	NTU	na na	<1
Water Elevation	ft MSL	na	1363.72
Metals	RIVISL	na .	1303.72
Antimony	μg/L	5.0	<1.0
Arsenic	μg/L	6.0	3.5
Barium	μg/L μg/L	1,000	17
Beryllium	μg/L μg/L	3.0	<1.0
Boron	μg/L μg/L	285	22
Cadmium	μg/L μg/L	3.0	<0.20 e
Chromium	μg/L μg/L	52	<1.0
Cobalt	μg/L μg/L	23	<15
Copper	μg/L	10	1.0
Iron	μg/L μg/L	na	<20
Lead	μg/L	3.0	<1.0
Lithium	μg/L	88	<8.0
Manganese	μg/L	50	9.8
Mercury	μg/L	na	<0.500
Molybdenum	μg/L	22	<10
Nickel	μg/L μg/L	57	<2.0
Selenium	μg/L μg/L	5.0	<1.0
Silver	μg/L	0.4	<0.20
Strontium	μg/L μg/L	2,300	95 e
Thallium	μg/L	1.0	<1.0
Vanadium	μg/L	2.2	1.0
Zinc	μg/L	1,200	<10
Major Anions	PB D	*,1200	10
Alkalinity, Bicarbonate	mg/L	na	62
Chloride	mg/L	250	<1.0
Nitrogen, Ammonia	mg/L	10	0.023 a,s
Nitrogen, Nitrate	mg/L	10	<0.050
Nitrogen, Nitrite	mg/L	na	<0.050
Phosphorus, Total	mg/L	na	0.0169 e
Sulfate	mg/L	250	5.5
Major Cations		250	
Calcium	mg/L	na	15
Magnesium	mg/L	na	3.3
Potassium	mg/L	na	1.0
Sodium	mg/L	120	2.9
General	y D	130	
Hardness	mg/L	na	51
1101 di 1033	nig D	2454	V-1

Eagle Mine Groundwater Quality Data QAL052A

Parameter .	Unit	Maximum Daily Limit	2nd On 2012 5/1/2012
Field			
D.O.1	ppm	na	3.0
ORP	mV	na	118
рН	SU	9.0	8.5
Specific Conductance	μmhos/cm	na	130
Temperature	°C	na	11
Turbidity	NTU	na	<1
Water Elevation	ft MSL	na	1351.63
Metals			
Antimony	μg/L	5.0	<1.0
Arsenic	μg/L	6.0	1.0
Barium	μg/L	1,000	6.4
Beryllium	μg/L	3.0	<1.0
Boron	μg/L	285	<20
Cadmium	μg/L	3.0	<0.20 e
Chromium	μg/L	52	<1.0
Cobalt	μg/L	23	<15
Copper	μg/L	10	4.3
Iron	μg/L	na	94
Lead	μg/L	3.0	<1.0
Lithium	μg/L	88	<8.0
Manganese	μg/L	50	<5.0
Mercury	μg/L	na	< 0.500
Molybdenum	μg/L	22	<10
Nickel	μg/L	57	<2.0
Selenium	μg/L	5.0	<1.0
Silver	μg/L	0.4	< 0.20
Strontium	μg/L	2,300	53 e
Thallium	μg/L	1.0	<1.0
Vanadium	μg/L	2.2	1,2
Zinc	μg/L	1,200	<10
Major Anions	AR W		
Alkalinity, Bicarbonate	mg/L	na	58
Chloride	mg/L	250	1.1
Nitrogen, Ammonia	mg/L	10	0.17 a
Nitrogen, Nitrate	mg/L	10	< 0.050
Nitrogen, Nitrite	mg/L	na	<0.050
Phosphorus, Total	mg/L	na	0.0132 е
Sulfate	mg/L	250	7.1
Major Cations			
Calcium	mg/L	na	16
Magnesium	mg/L	na	3.6
Potassium	mg/L	na	0.89
Sođium	mg/L	120	1.5
General =			
Hardness	mg/L	na	55

Eagle Mine Groundwater Quality Data QAL053A

Paramieter	Unit	Maximum Daily Limit	2nd Qtr 2012 5/1/2012
Field	10.00	THE RESERVE OF THE PARTY OF THE	2000
D.O.1	ppm	na	3.8
ORP	mV	na	196
pH	SU	na	8.4
Specific Conductance	μmhos/cm	na	115
Temperature	°C	na	7.9
Turbidity	NTU	na	<1
Water Elevation	ft MSL	na	1386.18
Metals			
Antimony	μg/L	na	<1.0
Arsenic	μg/L	na	6.9
Barium	μg/L	na	8.1
Beryllium	μg/L	na	<1.0
Boron	μg/L	na	29
Cadmium	μg/L	na	<0.20 e
Chromium	μg/L	na	<1.0
Cobalt	μg/L	na	<15
Copper	μg/L	na	<1.0
Iron	μg/L	na	<20
Lead	μg/L	na	<1.0
Lithium	μg/L	na	<8.0
Manganese	μg/L	na	<5.0
Mercury	μg/L	na	<0.500
Molybdenum	μg/L	na	<10
Nickel	μg/L	na	<2.0
Selenium	μg/L μg/L	na	<1.0
Silver	μg/L	na	<0.20
Strontium	μg/L	na	78 e
Thallium	μg/L	na	<1.0
Vanadium	μg/L	na	1.6
Zinc	μg/L	na	<10
Major Anions	L G G A	110	10
Alkalinity, Bicarbonate	mg/L	na	49
Chloride	mg/L	na	1.0
Nitrogen, Ammonia	mg/L	na	<0.020 a
Nitrogen, Nitrate	mg/L	na	0.050
Nitrogen, Nitrite	mg/L	na	<0.050
Phosphorus, Total	mg/L	na	0.0247 e
Sulfate	mg/L	na	5.2
Major Cations	mg.c	314	J.,
Calcium	mg/L	na	13
Magnesium	mg/L	na	3.3
Potassium	mg/L	na	1.0
Sodium	mg/L	na	1.6
General	ui\$ir	11G	1.0
Hardness	те/Т	ne	46
riardness	mg/L	na	40

Eagle Mine Groundwater Quality Data QAL055A

Parameter	Unit	Maximum Daily Limit	2nd Qtv 2012 5/1/2012
Field			
D.O.1	ppm	na	11
ORP	mV	na	101
рН	SU	na	9.0
Specific Conductance	μmhos/cm	na	65
Temperature	°C	na	7.9
Turbidity	NTU	na	<1
Water Elevation	ft MSL	na	1362.29
Metals			10.00
Antimony	μg/L	na	<1.0
Arsenic	μg/L	na	1.7
Barium	μg/L	na	<5.0
Beryllium	μg/L	na	<1.0
Boron	μg/L	na	<20
Cadmium	μg/L	na	<0.20 e
Chromium	μg/L	na	<1.0
Cobalt	μg/L	na	<15
Copper	μg/L	na	<1.0
Iron	μg/L	na	<20
Lead	μg/L	na	<1.0
Lithium	μg/L	na	<8.0
Manganese	μg/L	na	<5.0
Mercury	μg/L	na	<0.500
Molybdenum	μg/L	na	<10
Nickel	μg/L	na	<2.0
Selenium	μg/L	na	<1.0
Silver	μg/L	na	<0.20
Strontium	μg/L	na	19 e
Thallium	μg/L	na	<1.0
Vanadium	μg/L	na	1.0
Zinc	μg/L	na	<10
Major Anions			
Alkalinity, Bicarbonate	mg/L	na	29
Chloride	mg/L	na	1.6
Nitrogen, Ammonia	mg/L	na	<0.020 a
Nitrogen, Nitrate	mg/L	na	0.093
Nitrogen, Nitrite	mg/L	na	<0.050
Phosphorus, Total	mg/L	na	0.0228 e
Sulfate	mg/L	na	2.3
Major Cations			
Calcium	mg/L	na	7.7
Magnesium	mg/L	na	1.6
Potassium	mg/L	na	<0.50
Sodium	mg/L	na	0.56
General		Seat Control of the Control	\$ 15 to 15
Hardness	mg/L	na	26

Eagle Mine Groundwater Quality Data QAL056A

		Maximum	2nd Oh: 2012
Parameter	Unit	Daily Limit	5/1/2012
Field			
D.O.1	ppm	na	12
ORP	mV	na	233
рН	SU	na	8.9
Specific Conductance	μmhos/cm	na	68
Temperature	°C	na	8.0
Turbidity	NTU	na	<1
Water Elevation	ft MSL	na	1391.66
Metals	A contract of		
Antimony	μg/L	na	<1.0
Arsenic	μg/L	na	<1.0
Barium	μg/L	na	<5.0
Beryllium	μg/L	na	<1.0
Boron	μg/L	na	<20
Cadmium	μg/L	na	<0.20 e
Chromium	μg/L	na	<1.0
Cobalt	μg/L	na	<15
Copper	μg/L	na	<1.0
Iron	μg/L	na	<20
Lead	μg/L	na	<1.0
Lithium	μg/L	na	<8.0
Manganese	μg/L	na	<5.0
Mercury	μg/L	na	<0.500
Molybdenum	μg/L	na	<10
Nickel	μg/L	na	<2.0
Selenium	μg/L	na	<1.0
Silver	μg/L	na	< 0.20
Strontium	μg/L	na	13 e
Thallium	μg/L	na	<1.0
Vanadium	μg/L	na	<1.0
Zinc	μg/L	na	<10
Major Anions			
Alkalinity, Bicarbonate	mg/L	na	29
Chloride	mg/L	na	1.2
Nitrogen, Ammonia	mg/L	na	<0.020 a
Nitrogen, Nitrate	mg/L	na	0.11
Nitrogen, Nitrite	mg/L	na	<0.050
Phosphorus, Total	mg/L	na	0.0183 e
Sulfate	mg/L	na	2.2
Major Cations			
Calcium	mg/L	na	8.5
Magnesium	mg/L	na ·	1.4
Potassium	mg/L	na	<0.50
Sodium	mg/L	na	0.53
General :			
Hardness	mg/L	na	27

Eagle Mine Groundwater Quality Data QAL057A

Parameter	Unit	Maximum Daily Limit	2nd Qn: 2012 -5/1/2012
Field	70 000		
D.O.1	ppm	na	11
ORP	mV	na	92
рН	SU	9.0	8.9
Specific Conductance	μmhos/cm	na	68
Temperature	°C	na	7.7
Turbidity	NTU	na	<1
Water Elevation	ft MSL	na	1359.98
Metals			
Antimony	μg/L	5.0	<1.0
Arsenic	μg/L	6.0	<1.0
Barium	μg/L	1,000	<5.0
Beryllium	μg/L	3.0	<1.0
Boron	μg/L	285	<20
Cadmium	μg/L	3.0	<0.20 e
Chromium	μg/L	52	<1.0
Cobalt	μg/L	23	<15
Copper	μg/L	10	<1.0
Iron	μg/L	na	<20
Lead	μg/Ł	3.0	<1.0
Lithium	μg/L	88	<8.0
Manganese	μg/L	50	<5.0
Mercury	μg/L	na	<0.500
Molybdenum	μg/L	22	<10
Nickel	μg/L	57	<2.0
Selenium	μg/L	5.0	<1.0
Silver	μg/L	0.4	< 0.20
Strontium	μg/L	2,300	12 e
Thallium	μg/L	1.0	<1.0
Vanadium	μg/L	2.2	<1.0
Zinc	μg/L	1,200	<10
Major Anions			
Alkalinity, Bicarbonate	mg/L	na	29
Chloride	mg/L	250	1.1
Nitrogen, Ammonia	mg/L	10	<0.020 a
Nitrogen, Nitrate	mg/L	10	0.11
Nitrogen, Nitrite	mg/L	na	<0.050
Phosphorus, Total	mg/L	na	0.0272 e
Sulfate	mg/L	250	2.3
Major Cations			
Calcium	mg/L	na	8.7
Magnesium	mg/L	na	1.5
Potassium	mg/L	na	< 0.50
Sodium	mg/L	120	0.63
General			Constant Constant
Hardness	mg/L	na	28

Eagle Mine Groundwater Quality Data QAL057D

Parameter	Unit	Maximum Daily Limit	2nd Otr 2012 5/1/2012
p. O		Daily Lilling	5/1/2012
Field			
D.O.1	ppm	na	5.7
ORP	mV	na	107
рН	SU	9.0	8.6
Specific Conductance	μmhos/cm	na	108
Temperature	°C	na	7.7
Turbidity	NTU	na	<1
Water Elevation	ft MSL	na	1360.06
Metals			
Antimony	μg/L	5.0	<1.0
Arsenic	μg/L	6.0	4.3
Barium	μg/L	1,000	<5.0
Beryllium	μg/L	3.0	<1.0
Boron	μg/L	285	22
Cadmium	μg/L	3.0	<0.20 e
Chromium	μg/L	52	<1.0
Cobalt	μg/L	23	<15
Copper	μg/L	10	<1.0
Iron	μg/L	na	<20
Lead	μg/L	3.0	<1.0
Lithium	μg/L	88	<8.0
Manganese	μg/L	50	<5.0
Mercury	μg/L	na	< 0.500
Molybdenum	μg/L	22	<10
Nickel	μg/L	57	<2.0
Selenium	μg/L	5.0	<1.0
Silver	μg/L	0.4	<0.20
Strontium	μg/L	2,300	56 e
Thallium	μg/L	1.0	<1.0
Vanadium	μg/L	2.2	1.1
Zinc	μg/L	1,200	<10
Major Anions			7.0
Alkalinity, Bicarbonate	mg/L	na	49
Chloride	mg/L	250	1.3
Nitrogen, Ammonia	mg/L	10	<0.020 a
Nitrogen, Nitrate	mg/L	10	0.072
Nitrogen, Nitrite	mg/L	na	<0.050
Phosphorus, Total	mg/L	na	0.0274 с
Sulfate	mg/L	250	4.9
Major Cations	1.0		
Calcium	mg/L	na	13
Magnesium	mg/L	na	2.6
Potassium	mg/L	na	0.80
Sodium	mg/L	120	1.2
General			
Hardness	mg/L	na	43

Footnote	Explanation
a	Estimated value. Duplicate precision for this parameter exceeded quality control limit.
e	Estimated value. The laboratory statement of data qualifications indicates that a quality control limit for this parameter was exceeded.
S	Potential false positive value. Compound present in blank sample.
na	Not applicable.

Appendix H

Effluent Quality Results

May 2012
Eagle Mine Site - WTP Effluent Monitoring

PARAMETER	BOD5 (mg/l)	Total Aluminum (mg/i)	Total Antimony (ug/l)	Total Arsenic (ug/l)	Total Arsenic (ug/l)	Total Barlum (ug/l)	Total Beryllium (ug/l)	Total Boron (ug/l)	Total Cadmium (ug/l)	Total Cadmium (ug/l)	Total Chromium (ug/i)	Total Cobalt (ug/l)	Total Copper (ug/i)	Total Copper (ug/l)	Total Fluoride (ug/i)	Total Lead (ug/l)
CODE	310	1105	1097	1002	1002	1007	1012	1022	1027	1027	1034	1037	1042	1042	951	1051
MONITORING POINT	£Q-1	€Q-1	EQ-1	EQ-1	€Q-1	EQ-1	EQ-1	EQ-1	EQ∙1	€Q-1	EQ-1	€Q-1	EQ-1	£Q∙1	EQ-1	EQ-1
STAGE	1	1	1	1	U	1	1	1	1	υ	1	1	1	U	11	11
1		<u> </u>			<u> </u>											
2																
3																
4																
5											<5.0	<5.0	<5.0		<100	<1.0
6	<2.0	<0.050	<2.0	<1.0		<10	<5.0	<10	<0.50 <0.50		<5.0 <5.0	<5.0	<5.0 <5.0		<100	<1.0
7	<2.0	<0.050	<2,0	<1.0		<10 <10	<5.0 <5.0	<10 <10	<0.50		<5.0	<5.0	<5.0		<100	<1.0
8	<2.0	<0.050	<2.0	<1.0		<10	<5.0 <5.0	<10	<0.50		<5.0	<5.0	<5.0		<100	<1.0
9	<2.0	<0.050	<2.0	<1.0		V10	\3.0		10.50				****			
10	<2.0	<0.050	<2.0	<1.0		<10	<5.0	<10	<0.50		<5.0	<5.0	<5.0		<100	<1.0
12	<2.0	<0.050	<2.0	<1.0		<10	<5.0	<10	<0.50		<5.0	<5.0	<5.0		<100	<1.0
13	<2.0	<0.050	<2.0	<1.0		<10	<5.0	<10	<0.50		<5.0	<5.0	<5.0		<100	1.2
14	<2.0	<0.050	<2.0	<1.0		<10	<5.0	<10	<0.50		<5.0	<5.0	<5.0		<100	<1.0
15	<2.0	<0.050	<2.0	<1.0		<10	<5.0	<10	<0.50		<5.0	<5.0	<5.0		<100	<1.0
16	<2.0	<0.050	<2.0	<1.0		<10	<5.0	<10	<0.50		<5.0	<5.0	<5.0		<100 <100	<1.0 <1.0
17	<2.0	<0.050	<2.0	<1.0		<10	<5.0	<10	<0.50		<5.0	<5.0	<5.0		<100	×1.0
18																
19																
20								-10	<0.50	·	<5.0	<5.0	<5.0		<100	<1.0
21	<2.0	<0.050	<2.0	<1.0		<10 <10	<5.0 <5.0	<10 <10	<0.50		<5.0	<5.0	<5.0		<100	<1.0
22	<2.0	<0.050	<2.0	<1.0		<10	<5.0 <5.0	<10	<0.50		<5.0	<5.0	<5.0		<100	<1.0
23	<2.0	<0.050	<2.0	<1.0		110	- 75,0	- 10	10.50		.510					
24		<u> </u>														
25						l										
26																
28	<2.0	<0.050	<2.0	<1.0		<10	<5.0	<10	<0.50		<5,0	<5.0	<5.0		<100	<1.0
29	<2.0	<0.050	<2.0	<1.0		<10	<5.0	<10	<0.50		<5.0	<5.0	<5.0		<100	<1.0
30																
31					<1.0					<0.50				<5.0		

May 2012 Eagle Mine Site - WTP Effluent Monitoring

PARAMETER	Total Lithlum (ug/l)	Total Manganese	Total Mercury (ug/l)	Total Molybdenum (ug/l)	Total Nickel (ug/i)	Total Potassium (ug/l)	Total Selenium (ug/i)	Total Selenium (ug/l)	Total Silver (ug/i)	Total Silver (ug/l)	Total Strontium (ug/i)	Total Thallium (ug/l)	Total Vanadium (ug/l)	Total Zinc (ug/i)	Total Sulfate (ug/l)	Total fron (ug/l)
CODE	1132	(ug/l) 1055	71900	1062	1067	937	1147	1147	1077	1077	1082	1059	1087	1092	81020	1045
CODE	1132	1033						50.4	FO 1	ro 4	€Q-1	EQ-1	€Q-1	EQ-1	EQ-1	EQ-1
MONITORING POINT	EQ∙1	EQ-1	EQ-1	EQ-1	EQ-1	EQ-1	€Q-1	EQ-1	EQ-1	EQ-1	£Q-1					
STAGE	1	1	1	1	1	1	1	υ	U	1	1	1	11	1	1	1 1
1																
2																
3														ļ		
4																
5													<4.0	<20	<5.0	<50
6	<10	<5.0	<0.000500	<5.0	<5.0	<200	<2.0		<0.20		<5.0	<2.0	<4.0 <4.0	<20	<5.0	<50
7	<10	<5.0	<0.000500	<5.0	<5,0	<200	<2.0		<0.20		<5.0	<2.0	<4.0	<20	<5.0	<50
8	<10	<5.0	<0.000500	<5.0	<5.0	<200	<2.0		<0.20		<5.0	<2.0	<4.0	<20	<5.0	<50
9	<10	<5.0	<0.000500	<5.0	<5.0	<200	<2.0		<0.20		<5.0	<2.0	<4.0	1 120	\J.U	
10											<5.0	<2.0	<4.0	<20	<5.0	<50
11	<10	<5.0	<0.000500	<5.0	<5.0	<200	<2.0		<0.20		<5,0 <5.0	<2.0	<4.0	<20	<5.0	<50
12	<10	<5.0	<0.000500	<5.0	<5.0	<200	<2.0		<0.20		<5.0 <5.0	<2.0	<4.0	<20	<5.0	<50
13	<10	<5.0	<0.000500	<5.0	<5.0	<200	<2.0		<0.20		<5.0 <5.0	<2.0	<4.0	<20	<5.0	<50
14	<10	<5.0	<0.000500	<5.0	<5,0	<200	<2.0		<0.20			<2.0 <2.0	<4.0	<20	<5.0	<50
15	<10	<5.0	<0.000500	<5.0	<5.0	<200	<2.0		<0.20		<5.0 <5.0	<2.0 <2.0	<4.0	<20	<5.0	<50
16	<10	<5.0	<0.000500	<5.0	<5.0	<200	<2.0		<0.20			<2.0	<4.0	<20	<5.0	<50
17	<10	<5.0	<0.000500	<5.0	<5.0	<200	<2.0		<0.20		<5.0	\2.0	74.0	\20	13.0	1 1
18														 		
19												···		 		
20									.0.00		<5.0	<2.0	<4.0	<20	<5.0	<50
21	<10	<5.0	<0.000500	<5.0	<5.0	<200	<2.0		<0.20 <0.20		<5.0	<2.0	<4.0	<20	<5.0	<50
22	<10	<5.0	<0.000500	<5.0	<5.0	<200	<2.0		<0.20		<5.0	<2.0	<4.0	<20	<5.0	<50
23	<10	<5.0	<0.000500	<5.0	<5.0	<200	<2.0		<0.20		75.0	12.0	17.0			1
24																
25																
26				ļ												
27						-200	<2,0		<0.20		<5.0	<2.0	<4.0	<20	<5.0	<50
28	<10	<5.0	<0.000500	<5.0	<5.0	<200	<2.0	-	<0.20		<5.0	<2.0	<4.0	<20	<5.0	<50
29	<10	<5.0	<0.000500	<5.0	<5.0	<200	<2.0		10.20		77.0	-2.0				
30 31								<2.0		<0.20				 		

May 2012
Eagle Mine Site - WTP Effluent Monitoring

PARAMETER	pH (minimum)	pH (maximum)	Dissolved Oxygen (mg/i)	Ammonia Nitrogen (mg/i)	Nitrate Nitrogen (mg/l)	Nitrite Nitrogen (mg/l)	Total Sodium (mg/l)	Total Chloride (mg/i)	Total Phosphorous (mg/i)	Specific Conductance (umhos/cm)	Effluent Flow (US GPD)	Effluent Flow (US GPY)	Influent Flow (US GPD)	Land Application Rate (Gal/sq ft)
CODE	99991	99992	300	90002	620	90004	90005	90006	90007	90019	90027	90028	50050	90010
MONITORING POINT	EQ-1	EQ-1	EQ-1	£Q∙1	EQ-1	EQ-1	EQ-1	£Q-1	EQ-1	EQ-1	EQ-1	EQ-1	IF-1	LA-1
STAGE	1	1	1	1	1	1	i	1	1	1	1	1	G	G3
1 1		<u> </u>									0	4076511	254887	0.00
2											0	4076511	183939	0.00
- 2		-									0	4076511	195343	0.00
Δ	_										0	4076511	36550	0.00
5											0	4076511	154236	0.00
<u>, , , , , , , , , , , , , , , , , , , </u>	7.6	8.1	7.1	0.23	<0.050	<0.050	1.9	1.8	0.012	24	19751	4096262	267753	0.16
7	7.3	8.3	7.8	0.41	<0.050	<0.050	1.3	1.7	<0.0100	14	87485	4183748	270927	0.71
- 8	7.4	8.4	8.1	0.35	<0.050	<0.050	1.0	1.3	<0,0100	11	185596	4369343	263583	1.52
9	8.1	8.6	8.1	0.20	<0.050	<0.050	0.98	1.3	< 0.0100	11	178586	4547930	286188	1.46
10	<u> </u>	0.0									0	4547930	284285	0.00
11	7.4	8.8	7.8	0.41	<0.050	<0.050	2.1	1.1	0.0111	27	155976	4703906	277257	1.27
12	6.9	8.6	8.0	<0.25	<0.050	<0.050	1.0	1.0	< 0.0100	15	218199	4922105	279935	1.78
13	6.8	8,2	7.9	<0.25	<0.050	<0.050	1.0	1.0	<0.0100	11	210068	5132174	278856	1.72
14	6.8	8.8	8.1	0.14	<0.050	<0.050	2.0	1.2	<0.0100	32	148853	5281026	276606	1.22
15	7.6	9.0	8.8	<0.25	< 0.050	<0.050	1.5	1.3	0.0163	17	67571	5348597	223050	0.55
16	5.6	8.7	6.1	0.58	<0.050	<0.050	3.6	1.7	0.0113	33	31647	5380244	273906	0.26
17	7.1	8.7	7.2	0.076	<0.050	<0.050	1.8	1.3	0.0283	20	40556	5420800	134200	0.33
18										****	0	5420800	193926	0.00
19											0	5420800	38	0.00
20											0	5420800	76610	0,00
21	7.1	8.7	9.0	0.063	<0.050	<0.050	1.6	1.1	0.0163	18	157416	5578216	272000	1.29
22	6.8	8.6	7.8	<0.25	<0.050	<0.050	2.4	<1.0	<0.0100	33	211566	5789782	277045	1.73
23	8.0	8.1	8.2	<0.25	<0.050	<0.050	1.3	<1.0	<0.0100	14	93077	5882859	145198	0.76
24											0	5882859	18567	0.00
25											0	5882859	820	0.00
26											0	5882859	719666	0.00
27											0	5882859	384071	0.00
28	8.1	8.7	7.4	0.17	<0.050	< 0.050	2.6	<1.0	<0.0100	20	220915	6103774	285754	1.80
29	7.8	8.8	6.7	0.12	<0.050	<0.050	2.1	<1.0	< 0.0100	22	122014	6225788	264474	1,00
30											0	6225788	33599	0.00
31											0	6225788	151903	0.00

Appendix I

Construction Certification

RioTinto

Kennecott Eagle Minerals

Kristen Mariuzza Environmental Manager 504 Spruce Street Ishpeming, Michigan 49849 (906) 486-1257

October 24, 2011

Mr. Randy Conroy Michigan Department of Environmental Quality 420 5th Street Gwinn, MI 49841

Subject:

Compliance Notification, Groundwater Discharge Permit GW1810162 Kennecott

Eagle Minerals Company

Dear Mr. Conroy:

In accordance with Part I Section 5b of the aforementioned groundwater discharge permit, Kennecott Eagle Minerals Company is providing this notification of schedule compliance. The water treatment facility construction was completed on October 7, 2011. This certification is being provided in the attached letter by John Woodson, M3Engineering, Professional Engineer License No. 57625.

Should you have any questions please contact me at (906) 486-1257.

Sincerely,

Kristen Mariuzza, P.E.

Environmental and Permitting Manager

enclosure

October 14, 2011

Correspondence M3-KEMC-1068L Project No. M3-PN100115

Ms. Kristen Mariuzza, P.E. General Manager of Engineering and Construction Kennecott Eagle Minerals Company 504 Spruce Street Ishpeming, MI 49849

Re: Water Treatment Facility

Dear Ms. Mariuzza:

The Water Treatment Plant building and equipment were installed per M3 design drawings and specifications utilizing a quality control and quality assurance program consistent with standard construction practices. This explicitly includes the construction and installation of the building shell, concrete, piping, electrical, HVAC, and equipment.

Sincerely,

M3 ENGINEERING & TECHNOLOGY CORPORATION

Copy: Daniel Neff, M3

Denton Henkelman, KEMC File: M3 –PN100115-152.1

2051 W. Sunset Rd. Suite 101

> Tucson, Arizona 85704

t 520.**293.1488** f 520.293.8349

www.m3eng.com