Environmental Consultants

November 3, 2014

Mr. Chris Hare Saginaw Bay District Supervisor MDEQ – Air Quality Division 401 Ketchum Street, Suite B Bay City, MI 48708

Subject: Stack test report for compliance testing of the Main Ventilation Air Raise operated at the Eagle Mine, LLC located in Michigamme Township, MI - SRN: N7581

Dear Mr. Hare:

Derenzo and Associates, Inc. is submitting, on behalf of Eagle Mine, LLC (Eagle Mine), the enclosed stack test report for compliance testing of the Main Ventilation Air Raise (MVAR) exhaust at the Eagle Mine facility in Michigamme Township, Michigan. The test event was performed on September 16, 2014.

The purpose of the test was to verify compliance with conditions of the facility's Permit to Install No.: 50-06B issued by the MDEQ-AQD on June 28, 2013. The testing consisted of measurements of particulate matter, copper, and nickel concentrations and mass emission rates associated with the operation of MVAR system.

Contact information is provided in the test report if you have any questions.

Sincerely, DERENZO AND ASSOCIATES, INC.

Tyler J. Wilson Environmental Consultant

Enclosure

c. Karen Kajiya-Mills, Supervisor – MDEQ-AQD-Technical Programs Unit

Environmental Consultants

November 3, 2014

Ms. Karen Kajiya-Mills Supervisor – Technical Programs Unit MICHIGAN DEPARTMENT OF ENVIRONMENTAL QUALITY AIR QUALITY DIVISION Constitution Hall, 2nd Floor South 525 W. Allegan Street P.O. Box 30260 Lansing, MI 48909

Subject: Stack test protocol for compliance testing of the Main Ventilation Air Raise operated at the Eagle Mine, LLC located in Champion, MI - SRN: N7581

Dear Mr. Hare:

Derenzo and Associates, Inc. is submitting, on behalf of Eagle Mine, LLC (Eagle Mine), the enclosed stack test report for compliance testing of the Main Ventilation Air Raise (MVAR) exhaust at the Eagle Mine facility in Michigamme Township, Michigan. The test event was performed on September 16, 2014.

The purpose of the test was to verify compliance with conditions of the facility's Permit to Install No.: 50-06B issued by the MDEQ-AQD on June 28, 2013. The testing consisted of measurements of particulate matter, copper, and nickel concentrations and mass emission rates associated with the operation of MVAR system.

Contact information is provided in the test report if you have any questions.

Sincerely, DERENZO AND ASSOCIATES, INC.

Tyler J. Wilson Environmental Consultant

Enclosure

c. Chris Hare Saginaw Bay District Supervisor – MDEQ-AQD

Environmental Consultants

# **EMISSION TEST REPORT**

#### Report Title TEST REPORT FOR THE VERIFICATION OF PARTICULATE MATTER, COPPER, AND NICKEL EMISSION RATES

Report Date November 3, 2014

Test Date(s) September 16, 2014

| Facility Information |                              |  |  |
|----------------------|------------------------------|--|--|
| Name                 | Eagle Mine, LLC              |  |  |
| Street Address       | 6510 AAA Road                |  |  |
| City, County         | Michigamme, Marquette County |  |  |
| Phone                | (906) 204-9867               |  |  |

# **Facility Permit Information**

State Registration No.: N7581

Permit to Install No.:

50-06B

| Testing Contractor |                                                   |  |
|--------------------|---------------------------------------------------|--|
| Company            | Derenzo and Associates, Inc.                      |  |
| Mailing Address    | 39395 Schoolcraft Road<br>Livonia, Michigan 48150 |  |
| Phone              | (734) 464-3880                                    |  |
| Project No.        | 1404014                                           |  |

# **TABLE OF CONTENTS**

| Secti | ion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Page                       |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| 1.0   | INTRODUCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                          |
| 2.0   | SUMMARY OF TEST RESULTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3                          |
| 3.0   | SOURCE DESCRIPTON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3                          |
| 4.0   | <ul> <li>SAMPLING AND ANALYTICAL PROCEDURES</li> <li>4.1 Summary of Test Procedures</li> <li>4.2 USEPA Method Sampling Procedures</li> <li>4.2.1 Velocity traverse locations, stack gas velocity measurements</li> <li>4.2.2 Measurement of exhaust gas CO<sub>2</sub> and O<sub>2</sub> content</li> <li>4.2.3 Determination of moisture content</li> <li>4.2.4 Determination of particulate matter, copper and lead emissions</li> <li>4.3 Quality Assurance and Quality Control Procedures</li> </ul> | 4<br>5<br>5<br>5<br>5<br>5 |
| 5.0   | <ul> <li><b>TEST RESULTS AND DISCUSSION</b></li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7                          |

# LIST OF TABLES

| Table | e                                                         | Page |
|-------|-----------------------------------------------------------|------|
| 2.1   | Summary of measured PM, copper, and nickel emissions      | 3    |
| 5.1   | Summary of mining activity schedule                       | 8    |
| 5.2   | Summary of MVAR fan process data                          | 8    |
| 5.3   | Pollutant concentrations and emission rates from the MVAR | 9    |

# LIST OF APPENDICES

| APPENDIX A | TEST PLAN APPROVAL LETTER                                            |
|------------|----------------------------------------------------------------------|
| APPENDIX B | PROCESS DATA                                                         |
| APPENDIX C | EXHAUST DUCT SAMPLING LOCATIONS                                      |
| APPENDIX D | EQUIPMENT CALIBRATION DATA                                           |
| APPENDIX E | LABORATORY ANALYTICAL REPORT                                         |
| APPENDIX F | FIELD SAMPLING DATA SHEETS AND COMPUTER GENERATED CALCULATION SHEETS |

Environmental Consultants

# TEST REPORT FOR THE VERIFICATION OF PARTICULATE MATTER, COPPER, AND NICKEL EMISSION RATES

#### EAGLE MINE, LLC CHAMPION, MI

# TEST DATE(s): September 16, 2014

# 1.0 INTRODUCTION

Eagle Mine, LLC (Eagle Mine), State Registration No. N7581, operates an underground nickel and copper mine located in Michigamme Township, Marquette County, Michigan. The mine is equipped with a fresh air ventilation system to supply fresh air to workers underground. The ventilation system exhausts to atmosphere through the Main Ventilation Air Raise (MVAR) system.

Installation and operation of the MVAR (identified as emission unit EUMVAR) is permitted by Michigan Department of Environmental Quality, Air Quality Division (MDEQ-AQD) Permit to Install No.50-06B, issued to Eagle Mine, LLC on June 28, 2013. Condition EUMVAR V.1, Testing/Sampling, of the permit requires Eagle Mine to perform testing to verify the particulate matter (PM), copper, and nickel emission rates from EUMVAR.

The PM, copper, and nickel emission testing was performed September 16, 2014 by Derenzo and Associates, Inc., personnel Tyler Wilson and Jason Logan. The project was coordinated by Ms. Jennifer Nutini, Environmental Engineer for Eagle Mine. Mr. Tom Gasloli and Ed Lancaster from the MDEQ-AQD were on-site to observe portions of the compliance testing.

A test protocol was submitted to the MDEQ-AQD prior to the testing project and a test plan approval letter was issued by the regulatory agency. The following items provide information required in MDEQ-AQD *Format for Submittal of Source Emission Test Plans and Reports*, dated December 2013.

Appendix A provides a copy of the MDEQ-AQD test plan approval letter.

Eagle Mine, LLC PM, Copper, and Nickel Emission Test Report November 3, 2014 Page 2

Questions regarding this emission test report should be directed to:

Ms. Jennifer Nutini, P.E. Environmental Engineer Eagle Mine, LLC 4547 County Road 601 Champion, MI 49814 (906) 204-9867 jennifer.nutini@lundinmining.com Tyler J. Wilson Environmental Consultant Derenzo and Associates, Inc. 39395 Schoolcraft Road Livonia, MI 48150 (734) 464-3880 twilson@derenzo.com

#### **Report Certification**

This test report was prepared by Derenzo, Associates, Inc. based on field sampling data collected by Derenzo and Associates, Inc. Facility process data were collected and provided by Eagle Mine employees or representatives. This test report has been reviewed by Eagle Mine representatives and approved for submittal to the Michigan Department of Environmental Quality (MDEQ).

I certify that the testing was conducted in accordance with the approved test plan unless otherwise specified in this report. I believe the information provided in this report and its attachments are true, accurate, and complete.

**Report Prepared By:** 

Tyler J. Wilson Environmental Consultant

Reviewed By:

Robert L. Harvey, P.E. General Manager

Based on information and belief formed after reasonable inquiry, I believe the statements and information in this report are true, accurate and complete. The testing was performed in accordance with the approved test plan.

Facility Certification By:

Jennifer Nutini, P.E. Environmental Engineer

Eagle Mine, LLC PM, Copper, and Nickel Emission Test Report

# 2.0 <u>SUMMARY OF TEST RESULTS</u>

Exhaust air from the MVAR was sampled for three (3) two-hour test periods that were coordinated with facility operations to include the major components of the underground mining activities. Particulate matter (PM) in the MVAR exhaust gas was determined using US Environmental Protection Agency (USEPA) Method 5; copper and nickel concentrations and emission rates were determined using USEPA Method 29.

PM, copper, and nickel exhaust gas emission rates (pounds per hour) were calculated for each two-hour test period then converted to pounds per day (PPD) emission rates for comparison to the emission limits specified in PTI No. 50-06B.

Table 2.1 presents a summary of the measured PM, copper, and nickel exhaust gas emission rates.

The measured emission rates are less than the allowable PPD emission rates specified in PTI 50-06B for PM, copper, and nickel for all processes combined and exhausted to the MVAR (232 PPD, 0.21 PPD, and 0.18 PPD, respectively).

| Source       | Exhaust  | PM        | Copper    | Nickel    |
|--------------|----------|-----------|-----------|-----------|
|              | Flowrate | Emissions | Emissions | Emissions |
| ID           | (dscfm)  | (PPD)     | (PPD)     | (PPD)     |
| EUMVAR       | 259,040  | 34.5      | 0.061     | 0.050     |
| Permit Limit |          | 232       | 0.21      | 0.18      |

Table 2.1Summary of measured PM, copper, and nickel emissions

# 3.0 SOURCE DESCRIPTION

Eagle Mine operates an underground nickel and copper mine and surface support activities. Processes and activities that occur underground include vehicle travel, drilling, blasting, ore handling, and development rock handling. The underground mine is equipped with a fresh air ventilation system. Fresh air that is drawn into the underground mine through the mine entrance portal is returned to the atmosphere by the Main Ventilation Air Raise (MVAR) system, which primarily consists of two 300,000 cubic feet per minute (cfm) capacity fans connected to a vertical exhaust stack.

The underground activities operate on a 12-hour cycle. Material (ore, development rock) handling occurs, in general, at the beginning of each 12-hour shift, though this can continue as long as necessary to manage materials. This is followed by bolting and drilling to install a round of explosives. A blast occurs near the end of each 12-hour work shift.

Eagle Mine, LLC PM, Copper, and Nickel Emission Test Report November 3, 2014 Page 4

# 4.0 <u>SAMPLING AND ANALYTICAL PROCEDURES</u>

A description of the sampling and analytical procedures is provided in the Test Plan dated July 7, 2014, which was approved by the MDEQ-AQD. This section provides a summary of those procedures.

# 4.1 Summary of Test Procedures

Exhaust air from the MVAR was sampled for three (3) two-hour test periods that were coordinated with facility operations to include the major components of the underground mining activities. The exhaust gas sampling was performed aboveground in the 126-inch diameter MVAR vertical exhaust stack.

Appendix B provides process records for the periods in which the sampling was performed.

Appendix C provides a diagram for the sampling location.

Derenzo and Associates, Inc. performed the specified pollutant measurements in accordance with the following USEPA reference test methods:

| USEPA<br>Reference | Property or<br>Analyte Measured | Analytical Methodology                                                                  |
|--------------------|---------------------------------|-----------------------------------------------------------------------------------------|
| Method 1           | Sample and traverse points      | Selection of sample and traverse locations based on physical measurements               |
| Method 2           | Volumetric flowrate             | Gas velocity measurements using type-S Pitot tube                                       |
| Method 3           | Molecular weight                | Exhaust gas $O_2$ and $CO_2$ content by Fyrite® analyzer                                |
| Method 4           | Exhaust gas moisture            | Isokinetic sampling and gravimetric analysis of net weight gain in chilled impingers    |
| Method 5           | Particulate Matter<br>emissions | Isokinetic sampling and gravimetric analysis of recovered filterable PM                 |
| Method 29          | Copper and Nickel emissions     | Isokinetic sampling and inductively coupled plasma mass spectrometry (ICP-MS) procedure |

Eagle Mine, LLC PM, Copper, and Nickel Emission Test Report

# 4.2 USEPA Method Sampling Procedures

#### 4.2.1 <u>Velocity traverse locations, stack gas velocity measurements (USEPA Method 1 and 2)</u>

The sampling location and traverse points were determined in accordance with USEPA Method 1 by; (1) measuring the location of the sample ports with respect to upstream and downstream disturbances, and (2) verifying the absence of cyclonic flow.

Stack gas velocity was measured using USEPA Method 2 during the isokinetic sampling periods. Gas velocity (pressure) measurements were performed at each stack traverse point with an S-type Pitot tube and red-oil manometer connected to the isokinetic sampling train. Temperature measurements were performed at each traverse point using a K-type thermocouple and a calibrated digital thermometer.

# 4.2.2 Measurement of exhaust gas CO<sub>2</sub> and O<sub>2</sub> content (USEPA Method 3)

The properties of the MVAR exhaust was similar to that of ambient air. USEPA Method 3 was used to determine exhaust gas molecular weight by measuring the oxygen  $(O_2)$  and carbon dioxide  $(CO_2)$  content in the exhaust gas using a Fyrite® gas analyzer that contains scrubbing solutions to selectively remove  $O_2$  and  $CO_2$  from the gas sample.

Samples were withdrawn from the air stream using a sample probe and hand-held aspirator and introduced to the Fyrite® solutions through the scrubbing tube inlet valve. The sampled gas was passed through the appropriate scrubbing solution several times and the gas concentration ( $O_2$  or  $CO_2$ ) was determined by the solution volume change as indicated by the calibrated scale on the Fyrite® scrubber chamber. Leak checks were performed prior to and following each use and chemicals are changed as needed to maintain reactivity.

# 4.2.3 Determination of moisture content (USEPA Method 4)

Exhaust gas moisture content was measured using the PM/nickel/copper sampling train and determined in accordance with USEPA Method 4. Moisture from the exhaust gas sample was removed by the chilled impingers in the isokinetic sampling train. The net moisture gain in the chilled impingers was determined by gravimetric analysis of the impingers. Percent moisture was calculated based on the measured net gain from the impingers and the metered gas sample volume of dry air.

# 4.2.4 Determination of PM, copper and nickel emissions (USEPA Method 5/29)

Exhaust gas was withdrawn from the MVAR exhaust stack at an isokinetic sampling rate using an appropriately-sized glass sample nozzle and heated probe. The collected exhaust gas was passed through a pre-tared glass fiber filter that was housed in a heated filter box and bubbled

Eagle Mine, LLC PM, Copper, and Nickel Emission Test Report

through an aqueous acidified solution of hydrogen peroxide in glass impingers. The gas sampling rate was measured using a calibrated dry gas meter.

At the conclusion of each two-hour test period, the sample train was leak-checked and disassembled. The filter was removed and stored in a sealed petri dish. The sample nozzle, glass probe liner, and front half of the filter holder were brushed and rinsed with 100 mL of acetone followed by a rinsed with 100 ml of  $0.1 \text{ N HNO}_3$ . The rinses were collected into uniquely labeled sample containers.

The impingers were weighed to determine moisture gain. The impinger contents were recovered into a sample container and each impinger, the back half of the filter holder and connecting glassware were rinsed 100 ml of 0.1 N HNO<sub>3</sub>. The rinses were added to the impinger contents sample container.

The recovered filter and rinses were stored in sealed containers and sent to Element One, Inc. (Wilmington, NC) for analysis. The filter and acetone rinses were dried and weighed according to USEPA Method 5 to determine the amount of filterable particulate matter captured by the sampling train.

The glass fiber filter was digested, combined with the impinger contents and rinses, and analyzed by inductively coupled plasma mass spectrometry (ICP-MS) pursuant to the USEPA Method 29 to determine the amount of copper and nickel captured by the sample train.

# 4.3 Quality Assurance/Quality Control Procedures

The Nutech® Model 2010 sampling console and dry gas meter, which was used to extract a metered amount of exhaust gas from the stacks was calibrated prior to and after the test event. The calibration procedure uses the critical orifice calibration technique presented in USEPA Methods 5 and 29. The digital pyrometer in the Nutech metering console was calibrated using a NIST traceable Omega<sup>®</sup> Model CL 23A temperature calibrator.

The Pitot tube used for velocity pressure measurements was inspected for mechanical integrity and physical design prior to the field measurements. The gas velocity measurement train (Pitot tube, connecting tubing and incline manometer) was leak-checked prior to the field measurements and periodically throughout the testing period.

Appendix D provides information and quality assurance data for the equipment used for the test periods (Pitot tube integrity inspection sheets, and meter box critical orifice calibration records).

The glassware used in the impinger trains was washed and rinsed prior to use in accordance with the procedures of USEPA Methods 5 and 29.

Eagle Mine, LLC PM, Copper, and Nickel Emission Test Report November 3, 2014 Page 7

All recovered samples were stored and shipped in pre-rinsed glass sample bottles with Teflon® lined caps. The liquid level on each bottle was marked with a permanent marker prior to shipment and the caps were secured closed with tape. Samples of the reagents used in the test event were sent to the laboratory for analysis with the test samples. The deionized high-purity water and acetone were analyzed according to USEPA Method 5 to verify that the reagents have low particulate matter residues. The deionized Type II water, 0.1 N nitric acid and 5 percent nitric acid/10 percent hydrogen peroxide reagents were analyzed by the laboratory using the procedures of USEPA Method 29 to verify that the reagents have low copper and nickel residue values.

The laboratory analyses were conducted by Element One, Inc. laboratory in accordance with the appropriate QA/QC procedures of the associated USEPA methodologies and are included on the final laboratory report.

Appendix E provides a copy of the laboratory analytical report.

# 5.0 TEST RESULTS AND DISCUSSION

Appendix F provides field sampling data sheets and computer-generated calculation sheets for each test period for the emission sources identified in this section.

# 5.1 Test Results for the MVAR

The MVAR was tested for PM, copper, and nickel emissions using USEPA Methods 5 and 29. The MVAR exhaust gas has an average measured volumetric flowrate of 259,040 dry standard cubic feet per minute (dscfm) and average PM, copper, and nickel emission rates of 34.5 PPD, 0.061 PPD, and 0.050 PPD, respectively.

Pound per hour (lb/hr) emission rates were calculated using the following equation:

((total pollutant (µg)) / Vm) \* Qstd \* 60 min/hr \* g/10.0E06 µg \* lb/453.6 g

Vm = Measured sample volume in  $ft^3$ Qstd = Dry standard flowrate

PPD emission rates were calculated by multiplying lb/hr emission rates by 24-hours.

Table 5.3 presents PM, copper, and nickel emission rates for the MVAR.

Eagle Mine, LLC PM, Copper, and Nickel Emission Test Report November 3, 2014 Page 8

# 5.2 **Process Operating Conditions During the Compliance Test Periods**

The testing was conducted while the associated processes of drilling, bolting, materials handling, vehicle travel, and blasting were operating.

Table 5.1 presents a summary of the mining activity schedule on the day of testing.

| Table 5.1 | Summary of mining activity schedule |
|-----------|-------------------------------------|
|-----------|-------------------------------------|

| Mining Activity | Time                       |
|-----------------|----------------------------|
| Mucking         | Morning                    |
| Drilling        | Afternoon                  |
| Blasting        | During Test No. 2 (~17:00) |

Appendix B provides process data collected by Eagle Mine representatives.

Table 5.2 presents a summary of MVAR fan process data from the day of testing.

|                         | Fan power<br>(amps) | Fan load<br>(%) | Fan flowrate<br>(kcfm) | Air rise temperature<br>(°F) | Ambient temperature<br>(°F) |
|-------------------------|---------------------|-----------------|------------------------|------------------------------|-----------------------------|
| Test No. 1 <sup>*</sup> | 51                  | 75              | 283                    | 64.2                         | 67.2                        |
| Test No. 2              | 51                  | 75              | 285                    | 65.5                         | 68.4                        |
| Test No. 3              | 51                  | 75              | 275 - 290              | 62.9                         | 65.9                        |
|                         |                     |                 |                        |                              |                             |

Table 5.2Summary of MVAR fan process data

Notes

\* Test No. 1 process data was estimated using Test No. 2 and Test No. 3 process data

Eagle Mine, LLC PM, Copper, and Nickel Emission Test Report November 3, 2014 Page 9

# Table 5.3 Emission rates for the Main Ventilation Air Raise (MVAR)

| Source<br>Test No.<br>Date<br>Time                                                                                     | <b>MVAR</b><br>1<br>9/16/14<br>11:55-14:10 | <b>MVAR</b><br>2<br>9/16/14<br>15:00-17:11 | <b>MVAR</b><br>3<br>9/16/14<br>17:59-20:10 | MVAR<br>Avg               |
|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|---------------------------|
| Exhaust Gas Properties                                                                                                 |                                            |                                            |                                            |                           |
| Exhaust gas flow (dscfm)<br>Temperature (°F)<br>Moisture (%H <sub>2</sub> O)                                           | 256,035<br>60<br>1.4                       | 256,769<br>60<br>1.5                       | 264,317<br>58<br>1.5                       | 259,040<br>59<br>1.5      |
| Sample Train Data                                                                                                      |                                            |                                            |                                            |                           |
| Sample volume (dscf)<br>Sample train PM catch (mg)<br>Sample train copper catch (µg)<br>Sample train nickel catch (µg) | 93.7<br>5.2<br>9.4<br>4.3                  | 93.9<br>3.7<br>9.0<br>9.0                  | 97.1<br>3.7<br>4.0<br>5.1                  | 94.9<br>4.2<br>7.5<br>6.1 |
| Emission Rates                                                                                                         |                                            |                                            |                                            |                           |
| PM Emission Rate (lb/hr)<br>PM Emission Rate (PPD)                                                                     | 1.80                                       | 1.25                                       | 1.26                                       | 1.44<br>34.5              |
| Copper Emission Rate (lb/hr)<br>Copper Emission Rate (PPD)                                                             | 0.003                                      | 0.003                                      | 0.001                                      | 0.003<br>0.061            |
| Nickel Emission Rate (lb/hr)<br>Nickel Emission Rate (PPD)                                                             | 0.001                                      | 0.003                                      | 0.002                                      | $0.002 \\ 0.050$          |

# APPENDIX A

# TEST PLAN APPROVAL LETTER

STATE OF MICHIGAN



GOVERNOR

# DEPARTMENT OF ENVIRONMENTAL QUALITY

LANSING



DAN WYANT DIRECTOR

July 30, 2014

Ms. Jennifer Nutini Eagle Mine, LLC 4547 County Road 601 Champion, Michigan 49814

Dear Ms. Nutini:

Eagle Mine, EUMVAR, Emission Testing, Permit: 50-06B, SRN: N7581 SUBJECT:

The Department of Environmental Quality (DEQ), Air Quality Division (AQD), has reviewed the protocol for testing EUMVAR at Eagle Mine. EUMVAR is the outlet of the main ventilation system for the mine. The EUMVAR stack will be tested for particulate, nickel and copper emissions. This testing is required by permit 50-06B.

Testing will be performed in accordance with Title 40 of the Code of Federal Regulations, Part 60, Appendix A, Methods 1, 2, 3, 4, 5, and 29, and State of Michigan Part 10 rules. Three 120minute runs will be performed. One sample will be taken during drilling operations. One sample will be taken during blasting and rock removal. One sample will be taken during rock removal and development. Testing will begin during the drilling prior to the first blast of the day. Testing will be used to develop an emission factor to determine compliance with the pounds per day limits.

All requirements and specifications of the above methods apply; any modifications of the test methods onsite must be approved by the Air Quality Division.

The following process data will be recorded during testing:

- fan amperage and fan percent load will be recorded once during each run
- drilling and blasting times will be recorded during testing
- the production rate, the estimated tonnes of ore and waste removed, will be recorded for the day of testing

The test report will include:

- all pre-test and post-test meter box calibration, pitot tube calibration, and field data sheets
  - all laboratory data including quality control audits
  - the process data listed above

All aborted or failed runs must be included in the report.

A complete copy of the test report should be sent to:

Mr. Ed Lancaster Department of Environmental Quality Air Quality Division 1504 West Washington Street Marquette, Michigan 49855

Ms. Karen Kajiya-Mills Department of Environmental Quality Air Quality Division Supervisor, TPU PO Box 30260 Lansing, Michigan 48909-7760

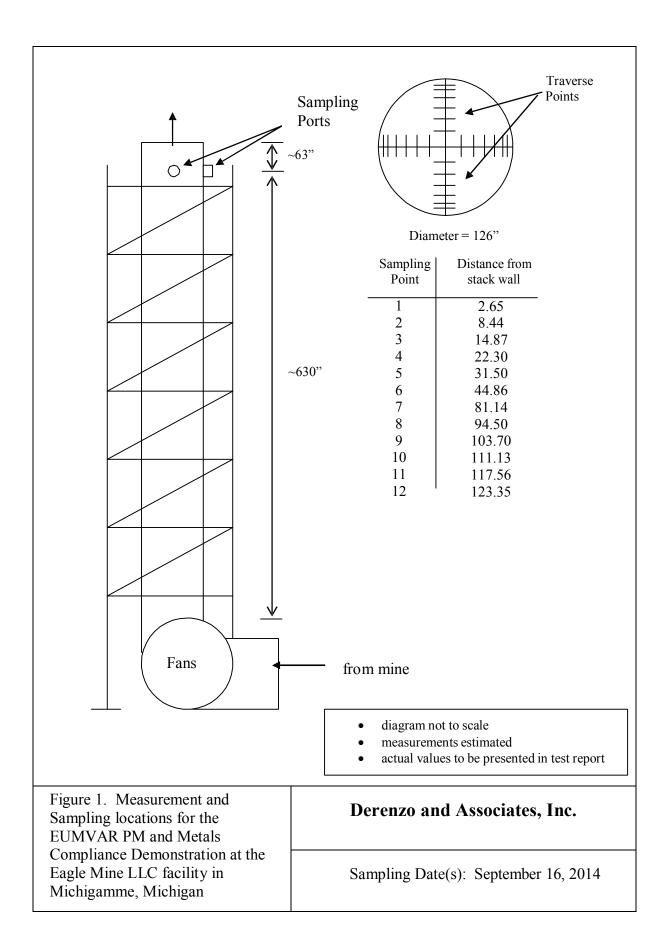
Testing is scheduled for the week of September 17, 2014. Please inform Mr. Ed Lancaster, of the Upper Peninsula District Office, at 906-250-5124, and myself, of any change in the test dates. If you have any questions regarding this letter, please contact me by telephone or e-mail at gaslolit@michigan.gov.

Sincerely,

Jem Costil

Tom Gasloli Technical Programs Unit Field Operations Section Air Quality Division 517-284-6778

cc: Mr. Robert Harvey, Derenzo Mr. Michael Brack, Derenzo Mr. Ed Lancaster, DEQ Mr. Chris Hare, DEQ

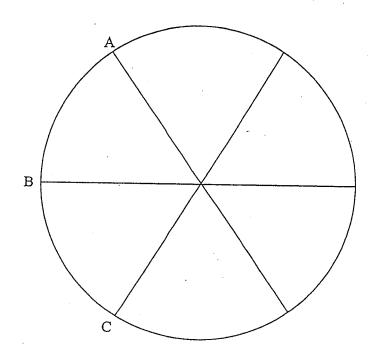

# APPENDIX B

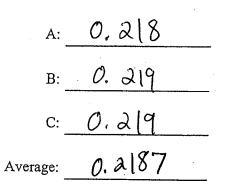
# PROCESS DATA

| Activity                    | Start   | End     | Duration | Tonnes | Rock Type |
|-----------------------------|---------|---------|----------|--------|-----------|
| Drill                       |         |         |          |        |           |
|                             | 1:30 PM | 3:30 PM | 2 hrs    | 296    | Ore       |
| Material Handling U/G       |         |         |          |        |           |
| Total                       |         |         |          | 572    | Ore       |
|                             |         |         |          |        |           |
| Material Removed to Surface |         |         |          |        |           |
| Total                       |         |         |          | 736    | Ore       |
|                             |         |         |          |        |           |
| Blast                       |         |         |          |        |           |
| 265 Level                   | 5:00 PM | -       | -        | 445.4  | Ore       |

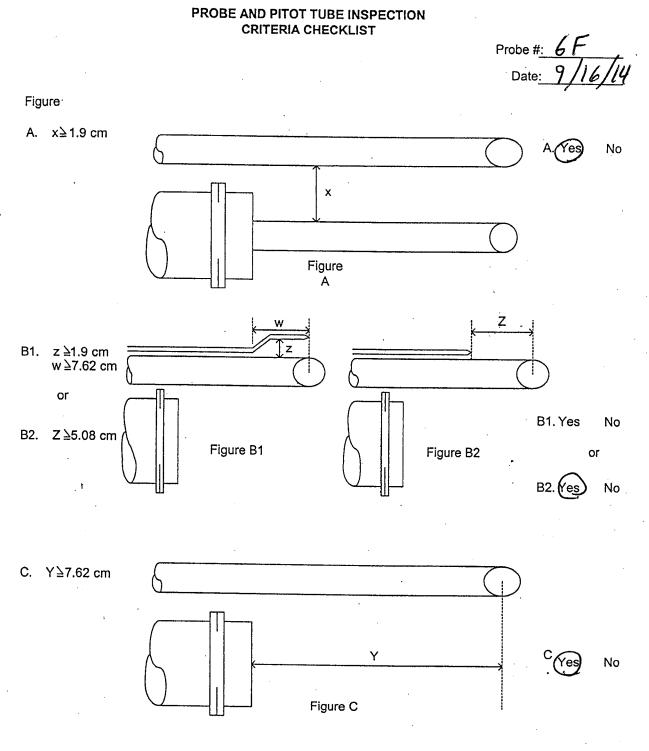
# APPENDIX C

# EXHAUST DUCT SAMPLING LOCATION





# APPENDIX D

# EQUIPMENT CALIBRATION DATA


# NOZZLE INSPECTION CRITERIA CHECKLIST

| Nozzle ID: | EM-MVA  | R Nozzle |
|------------|---------|----------|
| Date:      | 9/16/14 | (glass)  |





Comments:



Pitot Tube Correction Factor:

0.84

20

10

5

2

|                                       |                  |           | Data Sheet |           |         |
|---------------------------------------|------------------|-----------|------------|-----------|---------|
| Facility:                             | Eagle MVAR       | line      |            | Test No.  | Cal.    |
| Source:                               | MVA              | 2         | -          | Date:     | 9/16/14 |
| Description:                          | MVAF<br>Scale Ca | libration |            | Operator: | TW      |
| · · · · · · · · · · · · · · · · · · · |                  | ······    | I          | T         |         |
|                                       | Expected         | Actual    |            |           |         |
|                                       | (5)              | (۶)       |            |           |         |
|                                       | 1000             | 999.7     |            |           |         |
|                                       | 500              | 499.9     |            |           |         |
|                                       | 200              | 200.1     |            |           |         |
|                                       | 200              | 100.0     |            |           |         |
|                                       | 50               | 50,0      |            |           |         |

20.0

10.0

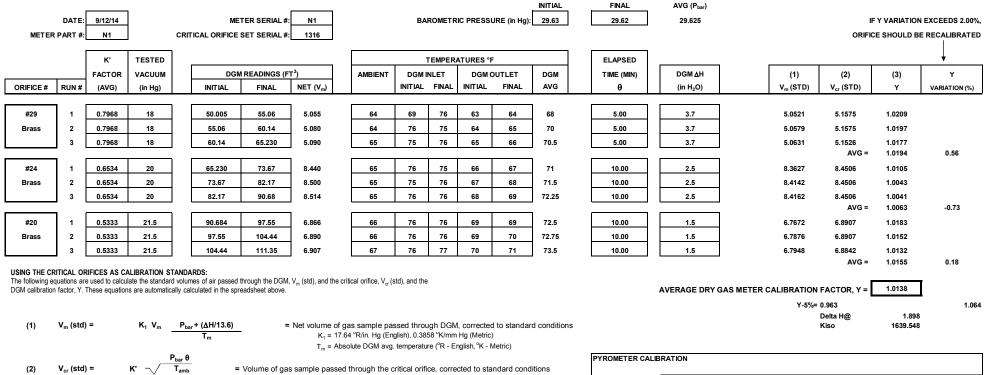
50.

2.0

1.0

|              | Field Data Sheet |                         |         |           |           |  |  |  |
|--------------|------------------|-------------------------|---------|-----------|-----------|--|--|--|
| Facility:    | Eagle A          | line                    |         | Test No.  | Cal.      |  |  |  |
| Source:      | MI/A             | line<br>R<br>ometo-Cali |         | Date:     | a lus lus |  |  |  |
| Description: | Mini Bas         | mader Cli               | bration | Operator: |           |  |  |  |
| Description. |                  | DINCTO CALL             |         | operation |           |  |  |  |
|              | Expetted<br>(ia) | Actual<br>(in)          |         |           |           |  |  |  |
|              | (ia)             | (in)                    |         |           |           |  |  |  |
| . <u></u>    | 29.43            | 29.43                   |         |           |           |  |  |  |
|              |                  |                         |         |           |           |  |  |  |
|              |                  |                         |         |           |           |  |  |  |
|              |                  |                         |         |           |           |  |  |  |
|              |                  |                         |         |           |           |  |  |  |
|              |                  |                         |         |           |           |  |  |  |
|              |                  |                         |         |           |           |  |  |  |
|              |                  |                         | ·<br>   |           |           |  |  |  |
|              |                  |                         |         |           |           |  |  |  |
|              |                  |                         |         |           |           |  |  |  |
|              |                  |                         |         |           |           |  |  |  |
|              |                  |                         |         |           |           |  |  |  |
|              |                  |                         |         |           |           |  |  |  |
|              |                  |                         |         |           |           |  |  |  |
|              |                  |                         |         |           |           |  |  |  |
|              |                  |                         |         |           |           |  |  |  |
|              |                  |                         |         |           |           |  |  |  |
|              |                  |                         |         |           |           |  |  |  |
|              |                  |                         |         |           |           |  |  |  |
|              |                  |                         |         |           |           |  |  |  |
|              |                  |                         |         |           |           |  |  |  |

#### **METHOD 5 DRY GAS METER CALIBRATION USING CRITICAL ORIFICES**


#### **DERENZO & ASSOCIATES, INC**

1) Select three critical orifices to calibrate the dry gas meter which bracket the expected operating range.

2) Record barometric pressure before and after calibration procedure.

3) Run at maximum attainable vacuum (open coarse valve, close fine valve), for period of 5 minutes minimum for large orifice up to 10 minutes for smallest orifice.

4) Record readings in outlined boxes below, other columns are automatically calculated.



= Volume of gas sample passed through the critical orifice, corrected to standard conditions

| v                     |                          | T <sub>amb</sub> = Absolute ambient temperature ("R - English, "K - Metric) |
|-----------------------|--------------------------|-----------------------------------------------------------------------------|
|                       |                          | K' = Average K' factor from Critical Orifice Calibration                    |
| V <sub>cr</sub> (std) | = DGM calibration factor | r                                                                           |
| V <sub>m</sub> (std)  |                          |                                                                             |

(2)

(3)

Y =

| PYROMETER CALIBRATION |     |     |     |     |      |      |
|-----------------------|-----|-----|-----|-----|------|------|
| Meter                 | 32  | 100 | 252 | 500 | 1000 | 1499 |
| Omega                 | 32  | 100 | 250 | 500 | 1000 | 1500 |
| % Difference          | 0.0 | 0.0 | 0.8 | 0.0 | 0.0  | -0.1 |

#### **METHOD 5 DRY GAS METER CALIBRATION USING CRITICAL ORIFICES**

#### **DERENZO & ASSOCIATES, INC**

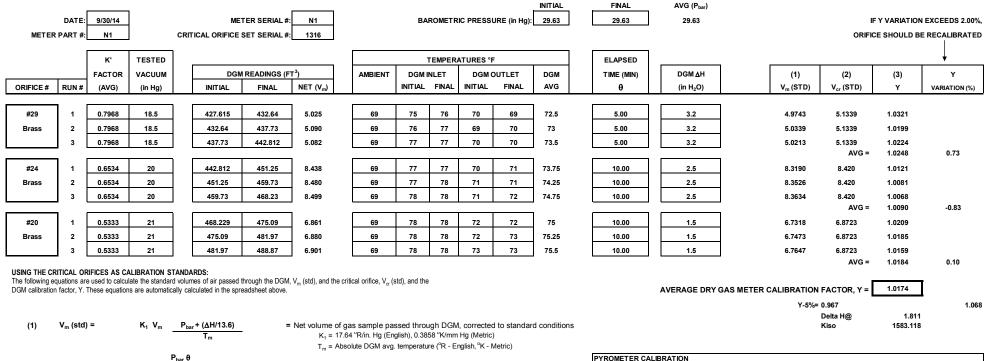
1) Select three critical orifices to calibrate the dry gas meter which bracket the expected operating range.

2) Record barometric pressure before and after calibration procedure.

(2)

(3)

V<sub>cr</sub> (std) =

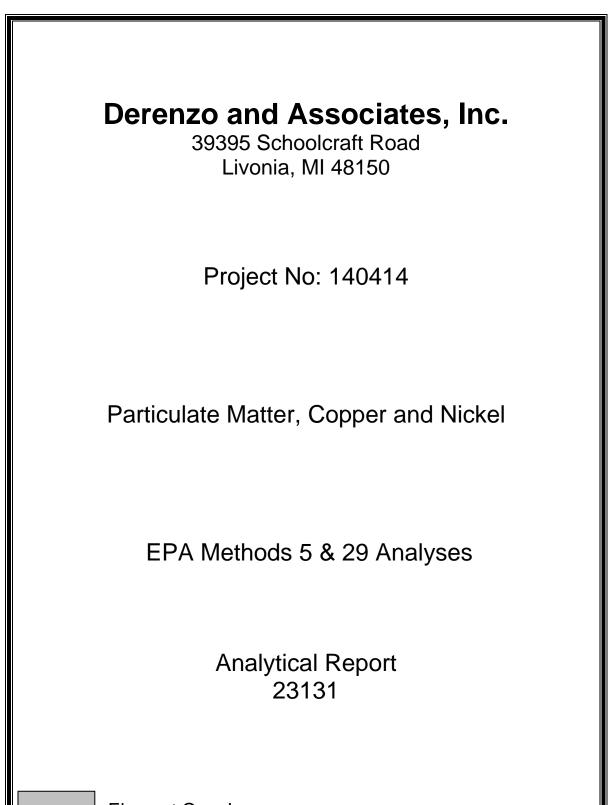

V<sub>cr</sub> (std)

V<sub>m</sub> (std)

Y =

3) Run at maximum attainable vacuum (open coarse valve, close fine valve), for period of 5 minutes minimum for large orifice up to 10 minutes for smallest orifice.

4) Record readings in outlined boxes below, other columns are automatically calculated.




| к 🔨                | T <sub>amb</sub> = Volume | e of gas sample passed through the critical orifice, corrected to standard conditions $T_{amb}$ = Absolute ambient temperature ("R - English, "K - Metric) |
|--------------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <sub>r</sub> (std) | = DGM calibration factor  | K' = Average K' factor from Critical Orifice Calibration                                                                                                   |

| PYROMETER CALIB | PYROMETER CALIBRATION |     |     |     |      |      |  |
|-----------------|-----------------------|-----|-----|-----|------|------|--|
| Meter           | 32                    | 100 | 251 | 500 | 1001 | 1502 |  |
| Omega           | 32                    | 100 | 250 | 500 | 1000 | 1500 |  |
| % Difference    | 0.0                   | 0.0 | 0.4 | 0.0 | 0.1  | 0.1  |  |

# APPENDIX E

# LABORATORY ANALYTICAL REPORT



Element One, Inc. 6319-D Carolina Beach Rd., Wilmington, NC 28412 910-793-0128 FAX: 910-792-6853 e1lab@e1lab.com The following data for Analytical Report 23131 has been reviewed for completeness, accuracy, adherence to method protocol, and compliance with quality assurance guidelines.

Review by:

Katie Strickland, B.S. Chemist October 6, 2014

Report Reviewed and Finalized By:

NA

Ken Smith, Laboratory Director October 6, 2014

elementOne 23131 Derenzo M29 5 Report Packet Page 2 of 24

# SUMMARY OF RESULTS

elementOne 23131 Derenzo M29 5 Report Packet Page 3 of 24

# Summary of Analysis

|          | Summary of Method 5 Particulate Analysis |                                 |                                            |                                        |  |  |  |
|----------|------------------------------------------|---------------------------------|--------------------------------------------|----------------------------------------|--|--|--|
| Fraction | Test 1<br>e23131-1<br>Catch, mg          | Test 2<br>e23131-2<br>Catch, mg | Test 3<br><sup>e23131-3</sup><br>Catch, mg | Reagent Blank<br>e23131-4<br>Catch, mg |  |  |  |
|          |                                          |                                 |                                            |                                        |  |  |  |
| Filter   | 0.2                                      | 0.1                             | < 0.1                                      | < 0.1                                  |  |  |  |
| Rinse    | 5.0                                      | 3.6                             | 3.6                                        | 1.5                                    |  |  |  |
| Total PM | 5.2                                      | 3.7                             | 3.6                                        | 1.5                                    |  |  |  |

# Front Half - Summary of Method 29 Metals Analysis

| Element | Test 1<br><sub>e23131-1</sub> FH<br>Total μg<br> | Test 2<br>e23131-2 FH<br>Total μg | Test 2<br>e23131-2 FH dup<br>Total μg | Test 3<br>e23131-3 FH<br>Total μg | Reagent<br>Blank<br>e23131-4 FH<br>Total µg |
|---------|--------------------------------------------------|-----------------------------------|---------------------------------------|-----------------------------------|---------------------------------------------|
| Copper  | 4.70                                             | 7.55                              | 7.18                                  | 3.39                              | 2.06                                        |
| Nickel  | 3.83                                             | 8.47                              | 8.14                                  | 4.57                              | 2.46                                        |

# Back Half - Summary of Method 29 Metals Analysis

| Element | Test 1<br>e23131-1 BH<br>Total μg | Test 2<br>e23131-2 BH<br>Total μg | Test 2<br>e23131-2 BH dup<br>Total μg | Test 3<br>e23131-3 BH<br>Total μg | Reagent<br>Blank<br>e23131-4 BH<br>Total µg |
|---------|-----------------------------------|-----------------------------------|---------------------------------------|-----------------------------------|---------------------------------------------|
| Copper  | 4.69                              | 1.48                              | 1.47                                  | 0.61                              | < 0.1                                       |
| Nickel  | 0.465                             | 0.478                             | 0.485                                 | 0.502                             | 0.346                                       |

# **ANALYTICAL NARRATIVE**

elementOne 23131 Derenzo M29 5 Report Packet Page 5 of 24

# **Element One Analytical Narrative**

| Client:    | Derenzo and Associates, Inc. | Element One #:  | 23131       |
|------------|------------------------------|-----------------|-------------|
| Client ID: | 140414                       | Analyst:        | LAW & DBW   |
| Method:    | Method 5 & 29                | Dates Received: | 09/22/14    |
| Analytes:  | PM, Cu & Ni                  | Dates Analyzed: | 09/25-29/14 |

# Summary of Analysis

The Method 5 particulate samples were analyzed in accordance with EPA Method 5 guidelines. Particulate samples were weighed to a constant weight of  $\pm 0.5$ mg and reported to the nearest 0.1mg. The Method 29 samples were digested, prepared, and analyzed according to Method 29 protocol. The samples were analyzed for metals on a PerkinElmer ELAN 6100 ICP-MS.

# **Detection Limits**

The ICP-MS instrument reporting limit was 1.0µg/L for the metals.

# Analysis QA/QC

Duplicate analyses relative percent difference (RPD), spike sample recovery, and second source calibration verification data are summarized in the Quality Control Section. All QA/QC data was within the criteria of the method.

# **Additional Comments**

The reported results have not been corrected for any blank values or spike recovery values. The reported results relate only to the items tested or calibrated.

The ICP-MS analysis of the Reagent Blank samples revealed detectable concentrations of metals. The unprepared 0.1N HNO<sub>3</sub> front half rinse and the unprepared combined FH/BH samples were analyzed, resulting in low concentrations of copper and nickel, suggesting the metals were in the filter portion of the sample.

# **QUALITY CONTROL SUMMARY**

elementOne 23131 Derenzo M29 5 Report Packet Page 7 of 24

# **Summary of Quality Control Data**

# Metals Duplicate Analysis RPD

| (Method 29 QC limits: < 20% f | or RPD) |
|-------------------------------|---------|
|-------------------------------|---------|

| Test 2       | Test 2                    |
|--------------|---------------------------|
| Front Half   | Back Half                 |
| RPD          | RPD                       |
| 5.0%<br>4.1% | 0.6%<br>1.4%              |
|              | Front Half<br>RPD<br>5.0% |

# Metals Analysis Spike Recoveries (Method 29 QC limits: 75-125% for Spike Recoveries)

| (       | Test 3     | Test 3    |
|---------|------------|-----------|
|         | Front Half | Back Half |
| Element | Recovery   | Recovery  |
| Copper  | 82%        | 96%       |
| Nickel  | 92%        | 99%       |

## Second Source Calibration Check Recoveries

(Method 29 QC limits: ±10% for Second Source Continuing Check Standard\*)

| Element | 1 ppb | 50 ppb | 100 ppb* | 250 ppb |
|---------|-------|--------|----------|---------|
| Copper  | 116%  | 107%   | 108%     | 104%    |
| Nickel  | 112%  | 106%   | 107%     | 105%    |

# SAMPLE CUSTODY

elementOne 23131 Derenzo M29 5 Report Packet Page 9 of 24

Element One, Inc. 6319-D Carolina Beach Road Wilmington, NC 28412

CHAIN OF CUSTODY

Lab ID # e 3313/ Page 1 of 2 Phone 910-793-0128 / FAX 792-6853 email e1lab@e1lab.com

| Company: De enzo dul Associator, Inc.<br>39395 School craft Ra.<br>Address: 1 41 4050 |         | FO#             |                   | 1381    | 11811                    |              |        | Anal   | Analyses Requested                                                                                       | tea       |                                     | Delivery Due Date                                                                              | 2 C                         | ner              | ate             |        |
|---------------------------------------------------------------------------------------|---------|-----------------|-------------------|---------|--------------------------|--------------|--------|--------|----------------------------------------------------------------------------------------------------------|-----------|-------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------|------------------|-----------------|--------|
| 39395 School craft Ro. Address: 1                                                     | 1       | Phone           | -                 | 734     | 4 64                     | 3880         |        |        |                                                                                                          | -         | -                                   | Normal                                                                                         | nal                         |                  |                 |        |
|                                                                                       |         | Fax             |                   | 734     | 24 464 45C               | 4368         |        |        |                                                                                                          |           |                                     | 5 day*                                                                                         | *                           |                  |                 |        |
|                                                                                       |         | Email           | lic               | 110     | 1050- @ derenzo con      | r 2m 20, (0  | c      |        |                                                                                                          |           |                                     | 3 day *                                                                                        | 3                           |                  |                 |        |
|                                                                                       |         | Email           | 19                |         |                          |              |        |        |                                                                                                          |           | -                                   | 2 day *                                                                                        |                             |                  |                 |        |
| Project ID: 1404 0/4                                                                  |         | Email           | 1 IE              |         |                          |              | 1      |        |                                                                                                          |           |                                     | 1 day*                                                                                         | * *                         |                  |                 |        |
| Billing information if different:                                                     |         |                 |                   |         |                          |              | 5      |        |                                                                                                          |           |                                     | <ul> <li>Rush work needs prior lab<br/>approval. Additional charges<br/>will apply.</li> </ul> | work<br>al. A               | k nee<br>vdditio | ds pr<br>onal ( | ior la |
|                                                                                       |         | <sup>1</sup> 00 | trix <sup>2</sup> | sutu;   | 1250210100               | S Compliance | yoy) a | poyt a |                                                                                                          |           | nenistric                           | orbic                                                                                          | <sup>E</sup> O <sup>z</sup> |                  | *05             |        |
| Sample Description / ID Date                                                          | e Time  | 1Åk             |                   |         | Hq<br>Re                 | Remarks      | 1      |        |                                                                                                          |           | 19                                  | noM<br>peA                                                                                     |                             | )BN              | SZH             | NH     |
| Test ND.1 CONT. AD. 2 9-16                                                            | .0      |                 |                   |         | acchine FH               | HJ 3         | ×      |        |                                                                                                          | F         | ⊢                                   |                                                                                                |                             |                  |                 |        |
| 7.54 AD. 2 cond. no. 2 9-16                                                           |         |                 |                   | 1       | acetone FH               | KFH          | ×      |        |                                                                                                          |           |                                     |                                                                                                |                             |                  |                 | 13     |
| 75400 Scont no.2 9-16                                                                 |         |                 |                   | -       | acchane FH               | PEH          | X      |        |                                                                                                          | _         | -                                   |                                                                                                |                             |                  |                 |        |
| Cont # 7 9-16                                                                         | 9       |                 |                   |         | arthone blank            | blank        | ×      |        |                                                                                                          |           |                                     |                                                                                                |                             |                  |                 |        |
| Test no. i cond no. 1 G-16                                                            |         |                 |                   | -       | filter                   |              | ×      | ×      |                                                                                                          |           | -                                   |                                                                                                |                             |                  |                 |        |
| Tist no. 2 cont no. 1 9-16                                                            | -       |                 |                   | 24      | tiller                   |              | ×      | ×      |                                                                                                          |           | 6                                   |                                                                                                | 22                          |                  | 14              |        |
| Test no. 3 rund no. 1 9-16                                                            | e       |                 |                   | -       | Filter                   |              | 7      | ×      |                                                                                                          |           | _                                   |                                                                                                |                             |                  |                 |        |
| Cont 12 G-1                                                                           | 9       |                 |                   |         | Alte blank               | olenk        | ×      | ×      |                                                                                                          |           |                                     |                                                                                                |                             |                  | 1               |        |
| Cont 86 9-16                                                                          |         |                 |                   | -       | H20 black                | ank          | X      | ×      |                                                                                                          |           |                                     |                                                                                                |                             |                  |                 |        |
| Turner O Constant                                                                     | 2 41414 |                 |                   | i i     |                          |              | _      |        |                                                                                                          |           |                                     |                                                                                                |                             |                  |                 |        |
|                                                                                       | INBWIX. | noa-Ha          | Offi As           | 1 L     | V-LIV AGU, CA            | -compiles    | A80, 2 | 00-00  | Marrix. DA-Douurit Asri, FA-Fry Asri, CA-Cuttalifed Asri, 3C-Soli, AC-Aqueous, NA-Non-aqueous, OI-Citter | S, NA-INC | npe-no                              | eous,                                                                                          | 5                           | -Otto            |                 |        |
| Relinquished by.                                                                      | Ite     | 4               | ö                 | Company |                          | Date         | Time   |        | Via                                                                                                      | Add       | Additional instructions / Lab Notes | instrue                                                                                        | ctions                      | s / Lat          | o Note          | 22     |
| Received by:                                                                          |         | 2-2-2-          | 67.W              | 5       | Were carse and 1850 card | 7-18         | donia  | _      | reker                                                                                                    |           |                                     |                                                                                                |                             |                  |                 |        |
| Relinquished by:                                                                      |         |                 |                   |         |                          |              |        |        |                                                                                                          |           |                                     |                                                                                                | 1 8                         |                  |                 |        |
| Fleosived by: Print                                                                   | 1.1     | Fliment due     | 2                 | du      | ,                        | 9.23         | 9:4    | 5      | 9.23 9:45 Feder                                                                                          | Recipien  | 1.0400                              | - Jood Car                                                                                     | Di                          | 3                | wider           | 6      |

Element One, Inc. 6319-D Carolina Beach Road Wilmington, NC 28412

CHAIN OF CUSTODY

Lab ID # **e** 33(3) Page 0<sup>f</sup> Prone 910-793-0128 / FAX 792-6853 email e1lab@e1lab.com

| CUTIBUL JESEN FUGAN                    |           |           | P               | PO #.  | 181     | -                     |                                                                                                                | -        | Analys     | Analyses Requested |                                     | _        | ivery                  | Delivery Due Date                                                                              | Dat   | æ                |            |
|----------------------------------------|-----------|-----------|-----------------|--------|---------|-----------------------|----------------------------------------------------------------------------------------------------------------|----------|------------|--------------------|-------------------------------------|----------|------------------------|------------------------------------------------------------------------------------------------|-------|------------------|------------|
| Company: perenzo and Associates,       |           | INC.      | F               | Phone  | 23      | 0395 h9h h8c          | 340                                                                                                            |          |            |                    | SSE                                 |          | Normal                 | -                                                                                              |       |                  |            |
| 39 39 5 School craft Rd                | 1.14      |           | Fax             | ×      |         |                       |                                                                                                                |          |            |                    | PIS                                 |          | 5 dav*                 |                                                                                                |       |                  |            |
| Address: Livina, MI                    |           |           | Ē               | Email  | 71      | logan @               | derenza. con                                                                                                   |          | 1          |                    | 10 (                                | -1       | 3 day *                |                                                                                                |       |                  |            |
|                                        |           |           | 딢               | Email  | 1       | ,                     |                                                                                                                |          |            |                    | pite                                | - 1      | 2 dav*                 |                                                                                                |       |                  |            |
| Project ID: 1404 JI 4                  |           |           | Ē               | Email  |         |                       |                                                                                                                | da       | PI<br>H    |                    | BIC                                 | 11       | 1 dav *                |                                                                                                |       |                  |            |
| Billing information if different.      |           |           |                 |        |         |                       |                                                                                                                | v - 64   |            |                    | , eqv T                             |          | * Rush we<br>approval. | <ul> <li>Rush work needs prior lab<br/>approval. Additional charges<br/>will apply.</li> </ul> | tions | prior<br>al cha  | lab        |
|                                        |           |           | <sup>1</sup> 90 | sxh    | s.ņu    | o ž<br>⊠⊠⊏            | Compliance                                                                                                     |          |            |                    | ntainer                             |          | orbic                  | EO2                                                                                            |       |                  | 57         |
| Sample Description / ID                | Date      | Time      | Typ             |        |         | Hd                    | Remarks                                                                                                        | ha W     | эV         | _                  | 00                                  | NON      | osA                    | SEN                                                                                            | NaC   | S <sup>z</sup> H | HCI<br>HMC |
| Trst no. 1 (out no. 3                  | 91-5      |           |                 | AQ     | -       | FH                    | FH D. IN HUD                                                                                                   | ×        |            |                    | 9                                   |          | t                      | ⊢                                                                                              | ⊢     | ×                | -          |
| - m 1                                  | 91-5      | territ.   | 2               | AQ     | 1       | N                     |                                                                                                                | ×        | 2          | State State        | 1                                   |          |                        |                                                                                                | -     | x                |            |
| Tret no. 3 cont no.3                   | 9-16      |           |                 | 40     | -       | 11                    |                                                                                                                | *        | X          |                    | 6                                   |          |                        | -                                                                                              | -     | x                | -          |
| Test no. 1 cent no.4                   | 9-6       |           |                 | AQ     | 1       | BH                    | BH S/10                                                                                                        | 2        | ×          |                    | d                                   |          |                        |                                                                                                |       | X                |            |
| Trst no. 2 cent no. 4                  | 946       |           |                 | A0     | -       | 11                    |                                                                                                                | ×        | ×          |                    | 6                                   |          | 1                      | 1                                                                                              | -     | ×                |            |
| Test nois Cont no. 4                   | 31-6      | 10-10-2   |                 | 40     | -       | 1001 - 1              |                                                                                                                | x        | x          |                    | 9                                   | 1        |                        |                                                                                                | -     | x                | 1          |
| cont &a                                | 91-3      |           |                 | AG     | -       | 0                     | O I N HND, black                                                                                               | ank x    | x          |                    | 6                                   |          |                        | -                                                                                              | ŀ     | >                | -          |
| cont 9                                 | 9-16      |           |                 | 40     | -       | 5/10                  | 0 black                                                                                                        | ×        | >          |                    | 6                                   | 2.11     |                        |                                                                                                |       | >                |            |
|                                        |           |           |                 |        |         | 500                   | 1000                                                                                                           |          |            |                    |                                     | 15       | 1000                   |                                                                                                |       | -                | -          |
| <sup>1</sup> Type: C-Composite, G-Grab | 14        | Matrix: E | 3A-Bol          | ttom A | sh, F,  | A-Fly Ash             | <sup>2</sup> Matrix: BA-Bottom Ash, FA-Fly Ash, CA-Combined Ash, SO-Soil, AQ-Aqueous, NA-Non-aqueous, OT-Other | d Ash, S | 0-Soil,    | AQ-Aqueous         | NA-Non-                             | aquec    | us, o                  | 11-Of                                                                                          | her   |                  |            |
| Print                                  | Signature |           |                 | 0      | Company | A                     | Date                                                                                                           | Time     |            | Via                | Additional instructions (1 ah Notas | insi ins | shruch                 | here //                                                                                        | N Ha  | ntae             |            |
| Refinquished by Raceived by:           |           |           | Dere            | 02.44  | , pro   | Derenzo and Acrocates | 0                                                                                                              | 4:0      | 4:00 Filer | det                | 2                                   |          |                        |                                                                                                |       | 0100             |            |
| Relinquished by:                       |           |           |                 |        |         |                       |                                                                                                                |          | +          |                    |                                     |          |                        | 1                                                                                              |       |                  |            |
| Received by Print letro Alie (         | e Cont    | 1         | Ele             | Men    | E +     | Element the lab       | 9.23.14 11.55                                                                                                  | 1159     |            | Fedrx D            | power of the production of the      | Con      | 1.1                    | 1:4:1                                                                                          | 1.    | 0.0              | tiput      |

#### Page 1 of 1

# Tared Filter Weights

#### Tyler Wilson <twilson@derenzo.com>

Tue 9/23/2014 1:10 PM

To:Lisa Braton <lisa.braton@e1lab.com>;

#### Hi Lisa,

Tared filter weights are below:

0022614022 = 346.72 mg 0022614023 = 346.27 mg 0022614024 = 349.35 mg 0022614025 = 348.13 mg

Thank you,

Tyler J. Wilson Environmental Consultant Derenzo and Associates, Inc. 39395 Schoolcraft Road Livonia M1 48150

Office: (734) 464-3880 Fax: (734) 464-4368 Email: twilson@derenzo.com Website: www.derenzo.com

https://outlook.office365.com/owa/

9/23/2014

# ANALYTICAL DATA

elementOne 23131 Derenzo M29 5 Report Packet Page 13 of 24

# **Analytical Calculations**

# Metals-

Element Results (µg) =ICP Results (µg/L)\*Dilution\*Final Volume (L)

## Where-

ICP Results= Raw sample concentration (ppb)--ICP-Data Sheet

Dilution= <u>Diluted Volume</u>--*ICP-MS Run Sheet* Aliquot

Final Volume=FH=Final Volume (FV)--Sample Submission BH=<u>Received Volume (BV)</u>.\*Final Volume (FV)--Sample Submission Aliquot (Used)

# **Analytical Calculations**

# Spike Recovery-

# Spike (%) = <u>(Spiked Result (µg/L) – Sample Result (µg/L))</u> X100 Spike Amount (µg/L)

## Where-

Spike Result = Raw sample concentration (ppb)--ICP-Data Sheet

Sample Result = Raw sample concentration (ppb)--*ICP-Data Sheet* 

Spike Amount--ICP-MS Spike Table

# **Duplicate Analysis RPD-**

# RPD (%) = (Duplicate Result ( $\mu$ g/L) - Sample Result ( $\mu$ g/L)) X100 Average ( $\mu$ g/L)

## Where-

Sample Result and Duplicate Results=Raw sample concentration (ppb)--ICP-Data Sheet

Average=(<u>Duplicate + Sample Results)</u> 2

## elementOne AIR TESTING SAMPLE SUBMISSION FORM Lab ID 23131

# Analysis Due Date 09.30.14 QA/QC/Report Due Date 10.02.14

 Client:
 Derenzo & Associates, Inc.
 Date Received
 09.22.14

 Project No
 140414
 Time Received
 0945

 HNO3 Lot:
 11 3120
 HF Lot:
 51/3050
 HCI Lot:
 35/87
 Ref. Method:

 Volume Marked V/ N
 Volume Loss Y (N) ?
 29/5
 29/5
 29/5

#### Sample Identification

FH / BH Separate

| 1     | M29/5-   | R1   |           |    |                  |         | 4   | Re  | agent B  | lank                               |         |                    |        |        |         |       |
|-------|----------|------|-----------|----|------------------|---------|-----|-----|----------|------------------------------------|---------|--------------------|--------|--------|---------|-------|
| 2     | M29/5-   | R2   |           |    |                  |         |     |     |          |                                    |         |                    |        |        |         |       |
|       | M29/5-   | R2   | Duplicate | Э  |                  |         |     |     |          |                                    |         |                    |        |        |         |       |
| 3     | M29/5-   | R3   |           |    |                  |         |     |     |          |                                    |         |                    |        |        |         |       |
|       | M29/5-   | R3   | Spike     |    |                  |         |     |     |          |                                    |         |                    |        |        |         |       |
|       |          |      |           |    |                  |         |     |     |          |                                    |         |                    |        |        |         |       |
| Amel  |          |      | a ta d    | 1  | Samp             | les 1-4 |     | Cu  | J, NÎ    |                                    |         |                    |        |        |         |       |
| Analy | yses Red | lue  | sted      | 1  | Samp             | les 1-4 |     | Pi  | vi.      |                                    |         |                    |        |        |         |       |
|       |          |      |           |    |                  | ALC: N  | =0/ |     |          | 0 000                              |         |                    |        |        |         |       |
| Runs  | s/ Fil   | I Ac | ce (FH)   |    | HNO <sub>3</sub> | (FH)    | 5%  | HNC | 2₃/10% H | l <sub>2</sub> O <sub>2</sub> (BH) | HNC     | D <sub>3</sub> (A) | KMn    | O₄ (B) | HC HC   | I (C) |
| FB    | pH       | <2.0 | D Y/N     | p⊦ | 1 <2.0           | (Y)/N   |     | pH  | -l<2.0 Υ | (/N                                | pH <2.0 | 0 Y/N              | pH <2. | 0 Y/N  | pH <2.0 | 0 Y/N |
| Lab   | D EiLI   | 2    | BV ml     | BV | ml               | EV ml   | BV  | ml  | Lised    | EV ml                              | DV ml   | EV ml              | DV ml  | EV ml  | DV ml   | 51/ I |

| FB     | pH <2.0 | ) Y/N | pH <2.0 | N (8) | pł    | H<2.0 Y | / N   | pH <2.0 | ) Y/N    | pH <2.0  | ) Y/N    | pH <2.0  | ) Y/N    |
|--------|---------|-------|---------|-------|-------|---------|-------|---------|----------|----------|----------|----------|----------|
| Lab ID | Fil ID  | BV ml | BV ml   | FV ml | BV ml | Used    | FV ml | BV mí   | FV ml    | BV ml    | FV ml    | BV ml    | FV ml    |
| 1      | 4022    | 88    | 105     | 100   | 305   | 153     | 50    | $\sim$  |          |          |          | /        | <u> </u> |
| 2.D    | 4023    | 88    | 105     |       | 290   | ЦŚ      | 5     | 1       | <u> </u> |
| 3.S    | 4024    | 90    | 105     |       | 305   | 153     |       | $\sim$  | $\sim$   | $\sim$   |          |          |          |

#### M-29 Reagent Blank

| Lab ID | Fractio | n  |                                                         | BV, ml | FV, ml | Comments                                 |     |
|--------|---------|----|---------------------------------------------------------|--------|--------|------------------------------------------|-----|
| 4      | C 7     | FH | Acetone Blank                                           |        |        |                                          |     |
|        | C 8A    | FH | 0.1N HNO3                                               | 315    | 100    | used 100mL for fit                       |     |
|        | C 8A    | A  | 0.1N HNO3                                               | $\sim$ |        |                                          |     |
|        | C 8B    | В  | DI H <sub>2</sub> O                                     |        |        |                                          |     |
|        | C 9     | BH | 5% HNO <sub>3</sub> /10% H <sub>2</sub> O <sub>2</sub>  | 200    | 50     | used 200 mL C9, 100 mL CSA cooked down ! | 500 |
|        | C 10    | В  | 4% KMnO <sub>4</sub> /10%H <sub>2</sub> SO <sub>4</sub> |        |        |                                          |     |
|        | C 11    | С  | 8N HCI DI H2O                                           |        | $\sim$ |                                          |     |
|        | C 12    | FH | Filter 4025                                             |        |        |                                          |     |

#### Lab Communications

| LEB FH+ | BHY | spked up | 100 y L | of St | dA, | B | (ZS ppm) |
|---------|-----|----------|---------|-------|-----|---|----------|
| オビリ     | er  | , ,      | 1       | 0     |     | - | 11 2     |

Per client via e-mail, FH / BH separate---LLB 09.23.14

Fractions Received C1, C2, C3, C4: RB: C12, C7, C8A, C8B, C9---LLB 09.22.14

SS Page1 of 1 9/23/2014 \_\_\_\_\_16:22 PM SS by \_\_\_\_\_\_\_ Labeled By/Date\_\_\_\_\_\_ 9.23.14

 FH Prep By/Date
 LAW
 9.26.14 A Prep By/Date

 BH Prep By/Date
 LAW
 9.26.14 B Prep By/Date

 BH/FH Prep By/Date
 LAW
 9.26.14 C Prep By/Date

 PM Prep By/Date
 LAW
 9.26.14 C Prep By/Date

 PM Prep By/Date
 LAW
 9.23.14 ID Verification By / Date

| element                           |                         |                                           |                            | N                             | lethod 5                  | Partic                        | ulate                     |                                |                           | Lab # 23131       |
|-----------------------------------|-------------------------|-------------------------------------------|----------------------------|-------------------------------|---------------------------|-------------------------------|---------------------------|--------------------------------|---------------------------|-------------------|
| Client<br>Balance ch              | Derenzo<br>necks        | Date: 09<br>Date: 09<br>Date: 09<br>Date: |                            | 2g = 2.0<br>2g = 2.0          |                           |                               |                           |                                | ncentration<br>E-05       | Page 1 of 1       |
| Filters                           |                         |                                           |                            |                               |                           |                               |                           |                                |                           |                   |
|                                   |                         |                                           | A                          |                               | в                         |                               | в                         | l                              | В                         |                   |
| Sample<br>ID #                    | Filter<br>ID            | Tin ID                                    | Filter<br>Tare, g          | Date - 09.25<br>Initals - LAW |                           | Date - 09.28<br>Initals - LAW |                           | Date<br>Initals                |                           | Catch Description |
|                                   |                         |                                           | 1816, 9                    | Time                          | Filter Weight,<br>g       | Time                          | Filter Weight,<br>g       | Time                           | Filter Weight,<br>g       | and Loading       |
| 23131-1                           | 4022                    | 1                                         | 0.3467                     | 10:45                         | 0.3472                    | 8:30                          | 0.3469                    |                                |                           |                   |
| 23131-2                           | 4023                    | 2                                         | 0.3463                     | 10:45                         | 0.3466                    | 8:30                          | 0.3464                    |                                |                           |                   |
| 23131-3                           | 4024                    | 3                                         | 0.3494                     | 10:45                         | 0.3493                    | 8:30                          | 0.3493                    |                                |                           |                   |
|                                   |                         |                                           |                            |                               |                           |                               |                           |                                |                           |                   |
| Client Blk-4                      | 4025                    | 4                                         | 0.3481                     | 10:45                         | 0.3481                    | 8:30                          | 0.3481                    |                                |                           |                   |
| E1 Blank                          |                         |                                           |                            |                               |                           |                               |                           |                                |                           |                   |
| Aceton                            | e Rins                  | ses                                       |                            |                               |                           |                               |                           |                                |                           |                   |
|                                   |                         |                                           | с                          |                               | D                         |                               | D                         | 1                              | D                         |                   |
| Sample<br>ID #                    | Sample<br>Volume,<br>ml | Bag ID                                    | Bag<br>Tare, o             | Date - 09.25<br>Initals - LAW |                           | Date - 09.26<br>Initals - LAW |                           | Date<br>Initals                |                           | Catch Description |
|                                   |                         |                                           | raie, g                    | Time                          | Bag & Sample<br>Weight, g | Time                          | Bag & Sample<br>Weight, g | Time                           | Bag & Sample<br>Weight, g | and Loading       |
| 23131-1                           | 88                      | X83                                       | 11.1374                    | 10:45                         | 11.1426                   | 8:30                          | 11.1424                   |                                |                           |                   |
| 23131-2                           | 88                      | 601                                       | 10.2007                    | 10:45                         | 10.2046                   | 8:30                          | 10.2043                   |                                |                           |                   |
| 23131-3                           | 90                      | 786                                       | 10.8987                    | 10:45                         | 10.9028                   | 8:30                          | 10.9023                   |                                |                           |                   |
|                                   |                         |                                           |                            |                               |                           |                               |                           |                                |                           |                   |
| Client Ace<br>Blk-4<br>E1 Acetone | 102                     | 792                                       | 10.6720                    | 10:45                         | 10.6737                   | 8:30                          | 10.6735                   |                                |                           |                   |
| Blank                             | 100                     | 811                                       | 9.8351                     | 10:45                         | 9.8355                    | 8:30                          | 9.8352                    |                                |                           |                   |
| Total C                           | atche                   | s                                         |                            |                               |                           |                               |                           |                                |                           |                   |
| Sample<br>ID #                    | Filter<br>ID            | Filter<br>Tare, g                         | Final Filter<br>+ Catch, g | Filter<br>Catch,<br>mg        |                           | Acetone<br>Bag ID             | Bag<br>Tare, g            | Final Bag +<br>Ace Catch,<br>g | Acetone<br>Catch, mg      | Total Catch, m    |
| 23131-1                           | 4022                    | 0.3467                                    | 0.3469                     | 0.2                           |                           | X83                           | 11.1374                   | 11.1424                        | 5.0                       | 5.2               |
| 23131-2                           | 4023                    | 0.3463                                    | 0.3464                     | 0.1                           |                           | 601                           | 10.2007                   | 10.2043                        | 3.6                       | 3.7               |
| 23131-3                           | 4024                    | 0.3494                                    | 0.3493                     | < 0.1                         |                           | 786                           | 10.8987                   | 10.9023                        | 3.6                       | 3.6               |
|                                   |                         |                                           |                            |                               |                           |                               |                           |                                |                           |                   |
| Client Blk-4                      | 4025                    | 0.3481                                    | 0.3481                     | < 0.1                         |                           | 792                           | 10.6720                   | 10.6735                        | 1.5                       | 1.5               |
| E1 Blank                          |                         |                                           |                            |                               |                           | 811                           | 9.8351                    | 9.8352                         | 0.1                       | 0.1               |

Element One, Inc. Form 123 - Revision 2.01.24.12

Junke Webb

elementOne

## Method 29 Microwave Worksheet

Lab ID # e 23131 Client: Denenzo

| Auto<br>Sample<br>Loc. | Sample Lab<br>ID            | Sample<br>Weight (g) | # of filters<br>digested | Spike | Prep Volume<br>(ml) | Weight In<br>Micro /<br>Weight Out<br>Micro | Units  |
|------------------------|-----------------------------|----------------------|--------------------------|-------|---------------------|---------------------------------------------|--------|
| 1                      | UKB +                       | *                    |                          | O.Lo  | nl Combine          | WI FUL FV=                                  | 001    |
| 3                      | LRB                         |                      |                          |       |                     |                                             |        |
| 5                      | 23131-1                     |                      | 1                        |       |                     |                                             |        |
| 7                      | -Z                          |                      | 1                        |       |                     |                                             |        |
| 9                      | -3                          |                      | 1                        |       |                     |                                             |        |
| 11                     | -4                          |                      |                          |       | $\sim$              |                                             |        |
|                        |                             |                      |                          |       |                     |                                             |        |
| 2                      | Clearing                    | 7                    |                          |       |                     |                                             |        |
| 4                      |                             |                      |                          |       |                     |                                             |        |
| 8                      |                             |                      |                          |       |                     |                                             |        |
| 10                     |                             |                      |                          |       |                     |                                             |        |
| 12                     |                             |                      |                          |       |                     |                                             |        |
| 13                     |                             |                      |                          |       |                     |                                             |        |
| 14                     |                             |                      |                          |       |                     |                                             |        |
| 15                     |                             |                      |                          |       |                     |                                             |        |
| 16                     | $\checkmark$                |                      |                          |       |                     |                                             |        |
|                        |                             |                      |                          |       |                     |                                             |        |
|                        |                             |                      |                          |       |                     |                                             |        |
|                        |                             |                      |                          |       |                     |                                             |        |
|                        |                             |                      |                          |       |                     |                                             |        |
|                        |                             |                      |                          |       |                     |                                             |        |
|                        |                             |                      |                          |       |                     |                                             |        |
| TI                     | 22 1                        |                      | 1 /                      |       |                     | 0.000                                       | Q main |
| 16 C                   | HNO3 1                      | ded 0.1              | mt of                    | - J)  | ppm btc             | 201414-14,                                  | DDD    |
| lent                   |                             |                      |                          |       |                     |                                             |        |
| Element O              | HF Lot<br>ne, Inc. Form 104 | -Revision 1.0        | )                        |       |                     |                                             |        |

Date Digested: 9126114 Initials: DBL Worksheet Prepared by: DBL

elementOne 23131 Derenzo M29 5 Report Packet Page 18 of 24

# Sample/Batch Report

Daplil

User Name: icp Computer Name: ICP-MS Sample File: C:\elandata\_icp\Sample\x6.sam Report Date/Time: Monday, September 29, 2014 11:41:25

| A/S Loc. | Batch ID | Sample ID   | Description | Sample Type     | Init. Quant. | Prep. Vol. | Aliquot Vol. | Diluted Vol. | Solids Ratio |
|----------|----------|-------------|-------------|-----------------|--------------|------------|--------------|--------------|--------------|
| 5        |          | QC STD 2    |             | Sample          |              |            |              |              |              |
| 301      |          | LRB FH      |             | Sample          |              |            |              |              |              |
| 302      | s        | LRB FH      |             | Spike - 1 of 2  |              |            |              |              |              |
| 303      |          | 23131-1 FH  | Derenzo     | Sample          |              |            |              |              |              |
| 304      |          | 23131-2 FH  | Derenzo     | Sample          |              |            |              |              |              |
| 305      | d        | 23131-2 FH  | Derenzo     | Duplicate of 5  |              |            |              |              |              |
| 306      |          | 23131-3 FH  | Derenzo     | Sample          |              |            |              |              |              |
| 307      | 8        | 23131-3 FH  | Derenzo     | Spike - 1 of 7  |              |            |              |              |              |
| 308      |          | 23131-4 FH  | Derenzo     | Sample          |              |            |              |              |              |
| 309      |          | LRB BH      |             | Sample          |              |            |              |              |              |
| 310      | 8        | LRB BH      |             | Spike - 1 of 10 |              |            |              |              |              |
| 311      |          | 23131-1 BH  | Derenzo     | Sample          |              |            |              |              |              |
| 312      |          | 23131-2 BH  | Derenzo     | Sample          |              |            |              |              |              |
| 313      | d        | 23131-2 BH  | Derenzo     | Duplicate of 13 |              |            |              |              |              |
| 314      |          | 23131-3 BH  | Derenzo     | Sample          |              |            |              |              |              |
| 315      | \$       | 23131-3 BH  | Derenzo     | Spike - 1 of 15 |              |            |              |              |              |
| 316      |          | 23131-4 BH  | Derenzo     | Sample          |              |            |              |              |              |
| 317      |          | 23131-4 FH  | uDerenzo    | Sample          |              |            |              |              |              |
| 318      |          | 23131-4 FHE | BlDerenzo   | Sample          |              |            |              |              |              |
| 319      |          | 23131-4 FH  | Derenzo     | Sample          |              |            |              |              |              |
|          |          |             |             |                 |              |            |              |              |              |
|          |          |             |             |                 |              |            |              |              |              |
|          |          |             |             |                 |              |            |              |              |              |
|          |          |             |             |                 |              |            |              |              |              |
|          |          |             |             |                 |              |            |              |              |              |
|          |          |             |             |                 |              |            |              |              |              |
|          |          |             |             |                 |              |            |              |              |              |
|          |          |             |             |                 |              |            |              |              |              |
|          |          |             |             |                 |              |            |              |              |              |
|          |          |             |             |                 |              |            |              |              |              |
|          |          |             |             |                 |              |            |              |              |              |
|          |          |             |             |                 |              |            |              |              |              |

Page 1

# Dataset Report

The Dataset

User Name: icp Computer Name: ICP-MS Dataset File Path: C:\elandata\_icp\DataSet\092914-2\ Report Date/Time: Monday, September 29, 2014 11:41:20

Autosampler Position: 306

Deptul

|                        |                |          | io Bataot       |             |             |            |               |             |
|------------------------|----------------|----------|-----------------|-------------|-------------|------------|---------------|-------------|
| Time                   | Sample ID      | Batch ID | Read Type       | Description | Init. Quant | Prep. Vol. | Aliquot. Vol. | Diluted Vol |
| 10:52:37 Mon 29-Sep-14 | Blank          |          | Blank           |             |             |            |               |             |
| 10:53:51 Mon 29-Sep-14 | Standard 1     |          | Standard #1     |             |             |            |               |             |
| 10:55:04 Mon 29-Sep-14 | Standard 2     |          | Standard #2     |             |             |            |               |             |
| 10:56:18 Mon 29-Sep-14 | Standard 3     |          | Standard #3     |             |             |            |               |             |
| 10:57:32 Mon 29-Sep-14 | QC Std 1       |          | QC Std #1       |             |             |            |               |             |
| 10:58:46 Mon 29-Sep-14 | QC Std 2       |          | QC Std #2       |             |             |            |               |             |
| 10:59:59 Mon 29-Sep-14 | QC Std 3       |          | QC Std #3       |             |             |            |               |             |
| 11:01:14 Mon 29-Sep-14 | QC Std 4       |          | QC Std #4       |             |             |            |               |             |
| 11:02:29 Mon 29-Sep-14 | QC Std 5       |          | QC Std #5       |             |             |            |               |             |
| 11:03:42 Mon 29-Sep-14 | QC Std 6       |          | QC Std #6       |             |             |            |               |             |
| 11:04:56 Mon 29-Sep-14 | QC Std 7       |          | QC Std #7       |             |             |            |               |             |
| 11:06:10 Mon 29-Sep-14 | QC STD 2       |          | Sample          |             |             |            |               |             |
| 11:07:24 Mon 29-Sep-14 | LRB FH         |          | Sample          |             |             |            |               |             |
| 11:08:38 Mon 29-Sep-14 | LRB FH         | s        | Spike - 1 of 13 |             |             |            |               |             |
| 11:09:52 Mon 29-Sep-14 | 23131-1 FH     |          | Sample          | Derenzo     |             |            |               |             |
| 11:11:05 Mon 29-Sep-14 | 23131-2 FH     |          | Sample          | Derenzo     |             |            |               |             |
| 11:12:19 Mon 29-Sep-14 | 23131-2 FH     | d        | Duplicate of 16 | Derenzo     |             |            |               |             |
| 11:13:32 Mon 29-Sep-14 | 23131-3 FH     |          | Sample          | Derenzo     |             |            |               |             |
| 11:14:46 Mon 29-Sep-14 | 23131-3 FH     | \$       | Spike - 1 of 18 | Derenzo     |             |            |               |             |
| 11:15:59 Mon 29-Sep-14 | 23131-4 FH     |          | Sample          | Derenzo     |             |            |               |             |
| 11:17:13 Mon 29-Sep-14 | LRB BH         |          | Sample          |             |             |            |               |             |
| 11:18:26 Mon 29-Sep-14 | LRB BH         | s        | Spike - 1 of 21 |             |             |            |               |             |
| 11:19:42 Mon 29-Sep-14 | QC Std 1       |          | QC Std #1       |             |             |            |               |             |
| 11:20:56 Mon 29-Sep-14 | QC Std 4       |          | QC Std #4       |             |             |            |               |             |
| 11:22:12 Mon 29-Sep-14 | 23131-1 BH     |          | Sample          | Derenzo     |             |            |               |             |
| 11:23:25 Mon 29-Sep-14 | 23131-2 BH     |          | Sample          | Derenzo     |             |            |               |             |
| 11:24:39 Mon 29-Sep-14 | 23131-2 BH     | d        | Duplicate of 26 | Derenzo     |             |            |               |             |
| 11:25:53 Mon 29-Sep-14 | 23131-3 BH     |          | Sample          | Derenzo     |             |            |               |             |
| 11:27:06 Mon 29-Sep-14 | 23131-3 BH     | s        | Spike - 1 of 28 | Derenzo     |             |            |               |             |
| 11:28:20 Mon 29-Sep-14 | 23131-4 BH     |          | Sample          | Derenzo     |             |            |               |             |
| 11:29:35 Mon 29-Sep-14 | QC Std 1       |          | QC Std #1       |             |             |            |               |             |
| 11:30:49 Mon 29-Sep-14 | QC Std 4       |          | QC Std #4       |             |             |            |               |             |
| 11:34:59 Mon 29-Sep-14 | 23131-4 FH ung | orep     | Sample          | Derenzo     |             |            |               |             |
| 11:36:13 Mon 29-Sep-14 | 23131-4 FHBH   | unprep   | Sample          | Derenzo     |             |            |               |             |
| 11:37:59 Mon 29-Sep-14 | 23131-4 FH     |          | Sample          | Derenzo     |             |            |               |             |
| 11:39:15 Mon 29-Sep-14 | QC Std 1       |          | QC Std #1       |             |             |            |               |             |
| 11:40:29 Mon 29-Sep-14 | QC Std 4       |          | QC Std #4       |             |             |            |               |             |
|                        |                |          |                 |             |             |            |               |             |

Page 1

element**One** Analyst:--DBW--

### ICP-MS RUN SHEET 9/29/2014

Job Number: 14

| A/S Loc.                            | Dilution        | Sample ID                                  | Client  | Туре            | Weight (g) | Prep Vol (m |
|-------------------------------------|-----------------|--------------------------------------------|---------|-----------------|------------|-------------|
| 5                                   |                 | QC STD 2                                   |         | Sample          |            |             |
| 301                                 |                 | LRB FH                                     |         | Sample          |            | 100         |
| 302                                 | s               | LRB FH                                     |         | Spike - 1 of 2  |            | 100         |
| 303                                 |                 | 23131-1 FH                                 | Derenzo | Sample          |            | 100         |
| 304                                 |                 | 23131-2 FH                                 | Derenzo | Sample          |            | 100         |
| 305                                 | d               | 23131-2 FH                                 | Derenzo | Duplicate of 5  |            | 100         |
| 306                                 |                 | 23131-3 FH                                 | Derenzo | Sample          |            | 100         |
| 307                                 | s               | 23131-3 FH                                 | Derenzo | Spike - 1 of 7  |            | 100         |
| 308                                 |                 | 23131-4 FH                                 | Derenzo | Sample          |            | 100         |
| 309                                 |                 | LRB BH                                     |         | Sample          |            | 50          |
| 310                                 | s               | LRB BH                                     |         | Spike - 1 of 10 |            | 50          |
| 311                                 |                 | 23131-1 BH                                 | Derenzo | Sample          |            | 50x2        |
| 312                                 |                 | 23131-2 BH                                 | Derenzo | Sample          |            | 50x2        |
| 313                                 | d               | 23131-2 BH                                 | Derenzo | Duplicate of 13 |            | 50x2        |
| 314                                 |                 | 23131-3 BH                                 | Derenzo | Sample          |            | 50x2        |
| 315                                 | s               | 23131-3 BH                                 | Derenzo | Spike - 1 of 15 |            | 50x2        |
| 316                                 |                 | 23131-4 BH                                 | Derenzo | Sample          |            | 50x2        |
| 317                                 |                 | 23131-4 FH unprep                          | Derenzo | Sample          |            | 315         |
| 318                                 |                 | 23131-4 FHBH unpre                         | Derenzo | Sample          |            | 315         |
| 319                                 |                 | 23131-4 FH                                 | Derenzo | Sample          |            | 100         |
|                                     |                 |                                            |         |                 |            |             |
| Sys<br>Submitted<br>DB<br>Re-Test F | for QC by:<br>W | 0:02mL of 25pp<br>Date/T<br>9/29/14<br>No: | ime:    | Comments:       |            | /Time:      |
| Resubmitt                           | ed for QC       | Date/T                                     | me:     | QC Review:      | By:        | Date/Time:  |

| 2 11 2 14 3 14 | Enalyte Mars<br>(amu)<br>6.0151<br>94.0559<br>59.9332 | 50<br>50 | sble 1 Sp | los Table 1 \$<br>Umit (Conc.) 25<br>25 | 1                 | 100 100             | (Conc.) Det.     | ilie Table 3<br>Limit (Conc.) | Spike Table 4<br>(Canc.) | Bpike Table 4<br>Det. Limit (Conc.) | Spike Table 9<br>(conc.) |
|----------------|-------------------------------------------------------|----------|-----------|-----------------------------------------|-------------------|---------------------|------------------|-------------------------------|--------------------------|-------------------------------------|--------------------------|
| 4 Gu           | 04.9278<br>0 164.93                                   | 50<br>50 | 1         | 25<br>25                                | 1                 | 100<br>100          | 1                |                               |                          |                                     |                          |
|                |                                                       |          |           |                                         |                   |                     |                  |                               |                          |                                     |                          |
|                |                                                       |          |           |                                         |                   |                     |                  |                               |                          |                                     |                          |
|                |                                                       |          |           |                                         |                   |                     |                  |                               |                          |                                     |                          |
|                |                                                       |          |           |                                         |                   |                     |                  |                               |                          |                                     |                          |
|                |                                                       |          |           |                                         |                   |                     |                  |                               |                          |                                     |                          |
|                |                                                       |          |           |                                         |                   |                     |                  |                               |                          |                                     |                          |
|                |                                                       |          |           |                                         |                   |                     |                  |                               |                          |                                     |                          |
|                |                                                       |          |           |                                         |                   |                     |                  |                               |                          |                                     |                          |
|                |                                                       |          |           |                                         |                   |                     |                  |                               |                          |                                     |                          |
|                |                                                       |          |           |                                         | - Third -         |                     |                  |                               |                          | AND AND ADDRESS                     |                          |
| _              | t → envis<br>Yocana Yot                               |          |           |                                         | s ) Calbation Std | s X Sample Inf Sids | λ Sample λ Spike | γ Dimpou y Dab                | licate 👌 Splike Ta       | ibles (OC Action Cr<br>Kill         |                          |
| 0 20           |                                                       |          |           |                                         |                   |                     | λ Sample λ Spike | γ αγμαριο γ αγάρ              | ilcate ), Bpike Ta       |                                     | stuA, eorin:<br>8 a      |

elementOne 23131 Derenzo M29 5 Report Packet Page 22 of 24

### ICP-MS QC Values Table

| Element or Test | ithium       | ICP<br>Element<br>Mass<br>8 | Element<br>symbol<br>Li | Lowest<br>Reported<br>Value<br>(ug) | Upper<br>Reported<br>Value<br>(ug) | Report<br>ing<br>Unit | QC#1 | QC #2 | QC #3      | QC #4      | QC #5    | QC#6<br>A | QC#7<br>AB | QC #8<br>.25 | QC #9<br>LRB | QC #10<br>LRB+ | QC #11<br>LRB+ |
|-----------------|--------------|-----------------------------|-------------------------|-------------------------------------|------------------------------------|-----------------------|------|-------|------------|------------|----------|-----------|------------|--------------|--------------|----------------|----------------|
| Lithium         | mum          | 7                           | ü                       | 1                                   | 500                                | mg/L                  | 0    | 1     | 250        | 100        | 50       |           |            |              | 0            | 50             | 100            |
| Beryllium       |              | é                           | Be                      | - i -                               | 500                                | mg/L                  | ŏ    | - i - | 250        | 100        | 50       |           |            | 0.25         | ŏ            | 50             | 100            |
|                 | Boron        | 10                          | В                       | 5                                   | 500                                | mg/L                  | õ    | - i - | 250        | 100        | 50       |           |            |              | õ            | 50             | 100            |
| Boron           |              | 11                          | в                       | 5                                   | 500                                | mg/L                  | 0    | 1     | 250        | 100        | 50       |           |            |              | 0            | 50             | 100            |
| Sodium          |              | 23                          | Na                      | 20                                  | 5500                               | mg/L                  | 0    | 21    | 2500       | 1100       | 250      |           |            |              | 0            | 718            |                |
| Magnesium       |              | 24                          | Mg                      | 20                                  | 5500                               | mg/L                  | 0    | 21    | 2500       | 1100       | 250      |           |            |              | 0            | 550            |                |
|                 | nesium       | 25                          | Mg                      | 20                                  | 5500                               | mg/L                  | 0    | 21    | 2500       | 1100       | 250      |           |            |              | 0            | 550            |                |
| Aluminum        |              | 27                          | A                       | 1                                   | 500                                | mg/L                  | 0    | 1     | 250        | 100        | 50       |           |            |              | 0            | 50             | 100            |
| Phosphorus      |              | 31                          | P                       | 20                                  | 5000                               | mg/L                  | 0    | 20    | 2500       | 1000       | 250      |           |            |              | 0            | 200            |                |
| Potassium       |              | 30                          | ĸ                       | 20                                  | 5500                               | mg/L                  | 0    | 20    | 2000       | 1000       | 200      |           |            |              | 0            | 500            |                |
| Calcium         | ndium        | 44<br>45                    | Ca                      | 50                                  | 5500                               | mg/L                  | U    | 21    | 2500       | 1100       | 250      |           |            |              | 0            | 550            |                |
| Titanium        | naium        | 40                          | Ti                      | 1                                   | 500                                | mg/L                  | 0    | 1     | 250        | 100        | 50       |           |            | 0.25         | 0            | 50             | 100            |
| Titanium        |              | 49                          | Ť                       | - i -                               | 500                                | mg/L                  | ŏ    | - i - | 250        | 100        | 50       |           |            | 0.25         | ŏ            | 50             | 100            |
| Vanadium        |              | 51                          | ÿ                       | - i -                               | 500                                | mg/L                  | ŏ    | - i - | 250        | 100        | 50       | 0         | 20         | 0.25         | ŏ            | 50             | 100            |
| Vanadium        |              | 51                          | v                       | - i -                               | 500                                | mg/L                  | ŏ    | - i - | 250        | 100        | 50       | ŏ         | 20         | 0.25         | õ            | 50             | 100            |
| Chromium        |              | 52                          | Ċr                      | - i -                               | 500                                | mg/L                  | ŏ    | - i - | 250        | 100        | 50       |           | 10         | 0.25         | ŏ            | 50             | 100            |
| Chro            | omium        | 53                          | Gr                      | 1                                   | 500                                | mg/L                  | ō    | 1     | 250        | 100        | 50       |           | 10         | 0.25         | ō            | 50             | 100            |
| Iron            |              | 54                          | Fe                      | 20                                  | 5500                               | mg/L                  | ō    | 21    | 2500       | 1100       | 250      | 0         |            |              | ō            |                |                |
| Manganese       |              | 55                          | Mn                      | 1                                   | 500                                | mg/L                  | 0    | 1     | 250        | 100        | 50       | 0         | 10         | 0.25         | 0            | 50             | 100            |
| Iron            |              | 57                          | Fe                      | 20                                  | 5500                               | mg/L                  | 0    | 21    | 2500       | 1100       | 250      | 0         |            |              | 0            |                |                |
| Cobalt          |              | 59                          | Co                      | 1                                   | 500                                | mg/L                  | 0    | 1     | 250        | 100        | 50       | 0         | 20         | 0.25         | 0            | 50             | 100            |
| Nickel          |              | 60                          | Ni                      | 1                                   | 500                                | mg/L                  | 0    | 1     | 250        | 100        | 50       | 0         | 20         | 0.25         | 0            | 50             | 100            |
| Copper          |              | 63                          | Cu                      | 1                                   | 500                                | mg/L                  | 0    | 1     | 250        | 100        | 50       | 0         | 10         | 0.25         | 0            | 50             | 100            |
| Copper          |              | 65                          | Cu                      | 1                                   | 500                                | mg/L                  | 0    | 1     | 250        | 100        | 50       | 0         | 10         | 0.25         | 0            | 50             | 100            |
| Zinc            | -            | 66                          | Zn                      | - 1                                 | 500<br>500                         | mg/L                  | 0    | 1     | 250<br>250 | 100<br>100 | 50<br>50 | 0         | 10<br>10   | 0.25         | 0            | 50<br>50       | 100<br>100     |
|                 | Zinc<br>Zinc | 67<br>68                    | Zn<br>Zn                |                                     | 500                                | mg/L                  | ö    |       | 250<br>250 | 100        | 50       | ő         | 10         | 0.25         | ö            | 50<br>50       | 100            |
| Germanium       | Zinc         | 72                          | Ge                      |                                     | 500                                | mg/L<br>mg/L          | ö    | - 4   | 250        | 100        | 50       | U         | 10         | 0.20         | ŏ            | 50             | 100            |
| Arsenic         |              | 75                          | As                      |                                     | 500                                | mg/L                  | ŏ    | - i - | 250        | 100        | 50       | 0         | 10         | 0.25         | ŏ            | 50             | 100            |
|                 | lenium       | 77                          | Se                      | - i -                               | 500                                | mg/L                  | ŏ    | - i - | 250        | 100        | 50       | ŏ         | 10         | 0.25         | ŏ            | 50             | 100            |
| Selenium        |              | 82                          | Se                      | - i -                               | 500                                | mg/L                  | ŏ    | - i - | 250        | 100        | 50       | ŏ         | 10         | 0.25         | õ            | 50             | 100            |
| Strontium       |              | 88                          | Sr                      | - i -                               | 500                                | mg/L                  | õ    | - i - | 250        | 100        | 50       | õ         |            |              | õ            | 50             | 100            |
| Molybdenum      |              | 95                          | Mo                      | 1                                   | 500                                | mg/L                  | 0    | 1     | 250        | 100        | 50       |           |            | 0.25         | 0            | 50             | 100            |
| Molybdenum      |              | 97                          | Mo                      | 1                                   | 500                                | mg/L                  | 0    | 1     | 250        | 100        | 50       |           |            | 0.25         | 0            | 50             | 100            |
| Molybdenum      |              | 98                          | Mo                      | 1                                   | 500                                | mg/L                  | 0    | 1     | 250        | 100        | 50       |           |            | 0.25         | 0            | 50             | 100            |
|                 | odium        | 103<br>107                  | 4-                      | 1                                   | 500                                |                       | 0    | 1     | 250        | 100        | 50       | 0         | 10         |              | 0            | 50             | 100            |
| Silver          | Silver       | 107                         | Ag<br>Ag                |                                     | 500                                | mg/L<br>mg/L          | ö    |       | 250        | 100        | 50       | ŏ         | 10         |              | ö            | 50             | 100            |
| Cadmium         | Oliver       | 111                         | ĉ                       | - i -                               | 500                                | mg/L                  | ŏ    | - i - | 250        | 100        | 50       | ŏ         | 5          | 0.25         | ŏ            | 50             | 100            |
|                 | dmium        | 114                         | Cd                      | - i -                               | 500                                | mg/L                  | 0    | 1     | 250        | 100        | 50       | 0         | 5          | 0.25         | 0            | 50             | 100            |
| Tin             |              | 118                         | Sn                      | 1                                   | 500                                | mg/L                  | 0    | 1     | 250        | 100        | 50       | 0         |            |              | 0            | 50             | 100            |
|                 | ntimony      | 121                         | Sb                      | 1                                   | 500                                | mg/L                  | 0    | 1     | 250        | 100        | 50       | 0         |            | 0.25         | 0            | 50             | 100            |
| Antimony        |              | 123                         | Sb                      | 1                                   | 500                                | mg/L                  | 0    | 1     | 250        | 100        | 50       | 0         |            | 0.25         | 0            | 50             | 100            |
| Tellurium       | esium        | 128<br>133                  | Te                      | 1                                   | 500                                | mg/L                  | 0    | 1     | 250        | 100        | 50       |           |            |              | 0            | 50             | 100            |
| -               | Barium       | 135                         | Ba                      | 1                                   | 500                                | mg/L                  | 0    | 1     | 250        | 100        | 50       | 0         |            |              | 0            | 50             | 100            |
| Barium          | Canuni       | 137                         | Ba                      | - 1                                 | 500                                | mg/L                  | ŏ    | - i - | 250        | 100        | 50       | ŏ         |            |              | ŏ            | 50             | 100            |
| Lanthanum       |              | 139                         | La                      | - i -                               | 500                                | mg/L                  | ŏ    | - i - | 250        | 100        | 50       |           |            |              | ŏ            | 50             | 100            |
| Tantalum        |              | 159                         | Та                      | 1                                   | 500                                | mğ/L                  | 0    | 1     | 250        | 100        | 50       |           |            |              | 0            | 50             | 100            |
| Platinum        |              | 195                         | Pt                      | 1                                   | 500                                | mg/L                  | 0    | 1     | 250        | 100        | 50       |           |            |              | 0            | 50             | 100            |
| Gold            |              | 181                         | Au                      | 1                                   | 500                                | mg/L                  | 0    | 1     | 250        | 100        | 50       |           |            |              | 0            | 50             | 100            |
| Thallium        |              | 205<br>208                  | П                       | - 1                                 | 500                                | mg/L                  | 0    | 1     | 250        | 100        | 50       | 0         |            | 0.05         | 0            | 50             | 100            |
| Lead<br>Bismuth |              | 208                         | Pb<br>Bi                |                                     | 500<br>500                         | mg/L                  | 0    | - 1   | 250<br>250 | 100<br>100 | 50<br>50 | 0         |            | 0.25         | 0            | 50<br>50       | 100<br>100     |
| Thorium         |              | 232                         | Th                      | - 1                                 | 500                                | mg/L<br>mg/L          | ŏ    | - 1   | 250        | 100        | 50       |           |            |              | ŏ            | 50             | 100            |
| Uranium         |              | 238                         | ü                       | - i -                               | 500                                | mg/L                  | ŏ    | - i - | 250        | 100        | 50       |           |            |              | ŏ            | 50             | 100            |
|                 | rypton       | 83                          | -                       | -                                   |                                    |                       | -    | -     |            |            |          |           |            |              | -            |                |                |
|                 |              |                             |                         |                                     |                                    |                       |      |       |            |            |          |           |            |              |              |                |                |

Method 6020 & 200.8 Metals Summary Report Sample ID: Blank Sample Da Monday, September 29, 2014 10:52:37 Sample Description: Concentration Results Analvte Mass Meas. Intens Conc. Mear Report Unit Li 6 142299.8 ppb ppb Sc 45 463654.3 Ni 60 62.7 ppb Cu 63 342 ppb 65 181 Cu ppb Rh 103 804145 ppb |> 165 Hο 1555757.5 ppb Kr 83 960.7 mg/L Method 6020 & 200.8 Metals Summary Report Sample ID: Standard 1 Sample Da Monday, September 29, 2014 10:53:51 Sample Description: **Concentration Results** Analyte Mass Meas. Intens Conc. Mear Report Unit Li 6 149247.7 ppb ppb 45 492034.8 Sc 4803.9 Ni 60 1.11242 ppb Cu 63 11554 1.14896 ppb Cu 65 1.15528 ppb 5687.1 Rh 103 847351.1 |> ppb Ho 165 1635162.6 ppb Kr 83 571.4 mg/L Method 6020 & 200.8 Metals Summary Report Sample ID: Standard 2 Sample Da Monday, September 29, 2014 10:55:04 Sample Description: Concentration Results Analyte Meas. Intens Conc. Mear Report Unit Mass Гi 6 146490.5 ppb Sc 45 485784.2 ppb 451699.5 106.08949 ppb 60 Ni 1041729.4 106.93698 ppb Cu 63 Cu 65 512682.1 107.75607 ppb Rh 103 847033.6 |> ppb 165 1639860.9 ppb Ho -29424.6 Kr 83 mg/L Method 6020 & 200.8 Metals Summary Report Sample ID: Standard 3 Sample Da Monday, September 29, 2014 10:56:18 Sample Description: Concentration Results Analyte Mass Meas. Intens Conc. Mear Report Unit Li 6 139623.8 ppb Sc 45 489113.3 ppb 2030080.3 498.78188 ppb Ni 60 Cu 63 4642802.2 498.61231 ppb Cu 65 2266907.9 498.44848 ppb |> Rh 103 810007.5 ppb Ho 165 1604399.6 ppb Kr 83 -145839.7 mg/L Method 6020 & 200.8 Metals Summary Report Sample ID: QC Std 1 Sample Da Monday, September 29, 2014 10:57:32 Sample Description: **Concentration Results** Analvte Meas. Intens Conc. Mear Report Unit Mass Li 6 143852.1 ppb 475939.2 Sc 45 ppb Ni 60 136.3 0.01676 ppb 0.03831 ppb Cu 63 727.7 Cu 65 337.3 0.03138 ppb Rh 103 840475.4 ppb 1> 165 1609668.1 Ho ppb

mg/L

Kr

83

909

Method 6020 & 200.8 Metals Summary Report Sample ID: QC Std 2 Sample Da Monday, September 29, 2014 10:58:46 Sample Description: **Concentration Results** Analvte Mass Meas. Intens Conc. Mear Report Unit Li 6 142243.3 ppb ppb Sc 45 477771.3 Ni 60 4748.9 1.1191 ppb Cu 63 11464.2 1.16053 ppb 65 5723.5 1.18425 ppb Cu Rh 103 832846 ppb |> 165 1596670.6 Hο ppb Kr 83 626.2 mg/L Method 6020 & 200.8 Metals Summary Report Sample ID: QC Std 3 Sample Da Monday, September 29, 2014 10:59:59 Sample Description: **Concentration Results** Analyte Mass Meas. Intens Conc. Mear Report Unit Li 6 132287.5 ppb 466412.3 45 ppb Sc Ni 60 1015426.5 261.34376 ppb Cu 63 2306846.5 259.52987 ppb Cu 1182484.9 272.39341 ppb 65 Rh 103 773042.9 |> ppb Ho 165 1514421.4 ppb Kr 83 -68238.5 mg/L Method 6020 & 200.8 Metals Summary Report Sample ID: QC Std 4 Sample Da Monday, September 29, 2014 11:01:14 Sample Description: Concentration Results Analyte Meas. Intens Conc. Mear Report Unit Mass Гi 6 144719.4 ppb Sc 45 484065.3 ppb 60 458781.2 106.5426 ppb Ni 1058938 107.4829 ppb Cu 63 Cu 65 524257.5 108.95473 ppb 103 856734.2 |> Rh ppb 165 1649582.5 ppb Ho -30220.8 Kr 83 mg/L Method 6020 & 200.8 Metals Summary Report Sample ID: QC Std 5 Sample Da Monday, September 29, 2014 11:02:29 Sample Description: Concentration Results Analyte Mass Meas. Intens Conc. Mear Report Unit 6 147114 Li ppb ppb Sc 45 490352.9 53.14429 ppb Ni 60 229331.3 Cu 63 530621.6 53.73796 ppb Cu 65 259948.2 53.898 ppb |> Rh 103 858354.2 ppb ppb Ho 165 1648312.4 Kr 83 928.6 mg/L Method 6020 & 200.8 Metals Summary Report Sample ID: QC Std 6 Sample Da Monday, September 29, 2014 11:03:42 Sample Description: **Concentration Results** Analvte Meas. Intens Conc. Mear Report Unit Mass Li 6 147018.3 ppb Sc 45 565556.1 ppb Ni 60 19967.9 4.63078 ppb 1.80735 ppb Cu 63 18130.7 Cu 65 10194.4 2.08328 ppb Rh 103 855053.5 ppb 1> 165 1767803.5 Ho ppb

958.8

83

Kr

#### element**One** e 23131-Metals

mg/L

| PerkinElm              | er ELAN 6                  | 100 IC    | P-MS       | 5                          |                      |              |
|------------------------|----------------------------|-----------|------------|----------------------------|----------------------|--------------|
| Method 60              | 20 & 200.8 M               | Metals S  | Summ       | ary Report                 |                      |              |
| Sample ID:             |                            |           |            |                            |                      |              |
| Sample Da<br>Sample De |                            | eptemb    | er 29,     | 2014 11:04:5               | 56                   |              |
| •                      | tion Results               |           |            |                            |                      |              |
| 0011001110             | Analyte                    | Mass      |            | Meas. Intens               | Conc. Mear           | Report Unit  |
|                        | Li                         |           | 6          | 152742.8                   |                      | ppb          |
| -                      | Sc                         |           | 45         | 573239.3                   | 00 00000             | ppb          |
|                        | Ni<br>Cu                   |           | 60<br>63   | 98181.7<br>117396.2        | 22.02928<br>11.48593 |              |
|                        | Cu                         |           | 65         | 58843.2                    | 11.78588             |              |
| >                      | Rh                         |           | 103        | 886292.4                   |                      | ppb          |
|                        | Ho                         |           | 165        | 1844662.4                  |                      | ppb          |
| Mothod 60              | Kr<br>20 & 200.8 M         | Motole S  | 83<br>Summ | 959.7                      |                      | mg/L         |
|                        | 20 & 200.8 i<br>: QC STD 2 | vietais c | Jumm       | ary Report                 |                      |              |
|                        |                            | eptemb    | er 29,     | 2014 11:06:1               | 0                    |              |
| Sample De              | •                          |           |            |                            |                      |              |
| Concentrat             | tion Results               | Mass      |            | Maga Intone                | Cono Moor            | Depart Linit |
|                        | Analyte<br>Li              | Mass      | 6          | Meas. Intens (<br>139862.4 | Jonc. Mear           | ppb          |
| -                      | Sc                         |           | 45         | 444423.3                   |                      | ppb          |
| i                      | Ni                         |           | 60         | 4586.5                     | 1.12244              | • •          |
|                        | Cu                         |           | 63         | 11164.2                    | 1.17398              |              |
|                        | Cu                         |           | 65         | 5467.3<br>801965.9         | 1.17425              |              |
| >                      | Rh<br>Ho                   |           | 103<br>165 | 1560969                    |                      | ppb<br>ppb   |
|                        | Kr                         |           | 83         | 621.6                      |                      | mg/L         |
|                        | 20 & 200.8 M               | Metals S  | Summ       | ary Report                 |                      | -            |
| Sample ID:             |                            |           | ~~         |                            |                      |              |
| Sample Da<br>Sample De |                            | eptemb    | er 29,     | 2014 11:07:2               | 24                   |              |
|                        | tion Results               |           |            |                            |                      |              |
| 0011001110             | Analyte                    | Mass      |            | Meas. Intens               | Conc. Mear           | Report Unit  |
|                        | Li                         |           | 6          | 156589.2                   |                      | ppb          |
| -                      | Sc                         |           | 45         | 542669.6                   | 4 00000              | ppb          |
|                        | Ni<br>Cu                   |           | 60<br>63   | 5458.3<br>12338.7          | 1.23296<br>1.19693   |              |
|                        | Cu                         |           | 65         | 6032.7                     | 1.1952               | • • .        |
| >                      | Rh                         |           | 103        | 869840.5                   |                      | ppb          |
|                        | Но                         |           | 165        | 1718658.6                  |                      | ppb          |
| Mathed CO              | Kr                         | Antolo C  | 83         | 876.6                      |                      | mg/L         |
| Sample ID:             | 20 & 200.8 M<br>• I RB FH  | vietais s | summ       | агу кероп                  |                      |              |
| •                      |                            | eptemb    | er 29.     | 2014 11:08:3               | 88                   |              |
| Sample De              |                            | •         | ,          |                            |                      |              |
| Concentrat             | tion Results               |           |            |                            |                      |              |
|                        | Analyte<br>Li              | Mass      | 6          | Meas. Intens (<br>160175.3 | Conc. Mear           |              |
| -                      | Sc                         |           | 45         | 543027.1                   |                      | ppb<br>ppb   |
| i                      | Ni                         |           | 60         | 226790.9                   | 52.41779             | • • .        |
|                        | Cu                         |           | 63         | 524472.5                   | 52.97324             |              |
|                        | Cu                         |           | 65         | 257992.5                   | 53.35309             |              |
| >                      | Rh<br>Ho                   |           | 103<br>165 | 860553<br>1737189.8        |                      | ppb<br>ppb   |
|                        | Kr                         |           | 83         | 850                        |                      | mg/L         |
| Method 60              | 20 & 200.8 M               | Metals S  |            |                            |                      | <u>9</u>     |
|                        | 23131-1 FH                 |           |            |                            |                      |              |
|                        |                            | eptemb    | er 29,     | 2014 11:09:5               | 52                   |              |
| Sample De              | ion Results                |           |            |                            |                      |              |
| 20110011101            | Analyte                    | Mass      |            | Meas. Intens               | Conc. Mear           | Report Unit  |
|                        | Li                         |           | 6          | 96194.1                    |                      | ppb          |
| -                      | Sc                         |           | 45         | 1119506.4                  |                      | ppb          |
|                        | Ni                         |           | 60<br>62   | 141497.9                   | 38.26642             |              |
| 1                      | Cu<br>Cu                   |           | 63<br>65   | 397677.7<br>217895.6       | 46.99781<br>52.72689 |              |
| >                      | Rh                         |           | 103        | 735459.9                   | 02.72003             | ppb          |
|                        | Ho                         |           | 165        | 1611759.9                  |                      | ppb          |
|                        | Kr                         |           | 83         | -614765.4                  |                      | mg/L         |
|                        |                            |           |            |                            |                      |              |

| FEIKIIIEIII | IEI ELAN O                   |          |            | 1                         |                      |              |
|-------------|------------------------------|----------|------------|---------------------------|----------------------|--------------|
|             | 20 & 200.8                   |          | Summ       | ary Report                |                      |              |
|             | : 23131-2 Fl                 |          | 00         | 004444444                 | r                    |              |
| Sample Da   |                              | eptemp   | er 29,     | 2014 11:11:0              | 5                    |              |
| •           | tion Results                 |          |            |                           |                      |              |
| Concontra   | Analyte                      | Mass     |            | Meas. Intens              | Conc. Mear           | Report Unit  |
|             | Li                           |          | 6          | 82486.1                   |                      | ppb          |
| -           | Sc                           |          | 45         | 1085231.7                 |                      | ppb          |
|             | Ni                           |          | 60         | 318030                    | 84.73652             |              |
|             | Cu                           |          | 63         | 648115.3                  | 75.47303             |              |
|             | Cu<br>Rh                     |          | 65<br>103  | 344640.3<br>746608.8      | 82.17814             | ppb          |
| >           | Но                           |          | 165        | 1634908.7                 |                      | ppb          |
|             | Kr                           |          | 83         | -650619.5                 |                      | mg/L         |
| Method 60   | 20 & 200.8                   | Metals S | Summ       | ary Report                |                      | -            |
|             | : 23131-2 F                  |          |            |                           |                      |              |
|             |                              | eptemb   | er 29,     | 2014 11:12:1              | 9                    |              |
| Sample De   | tion Results                 |          |            |                           |                      |              |
| Concentra   | Analyte                      | Mass     | 1          | Meas. Intens (            | Conc. Mear           | Report Unit  |
|             | Li                           | maoo     | 6          | 78550.1                   |                      | ppb          |
| -           | Sc                           |          | 45         | 1110770                   |                      | ppb          |
|             | Ni                           |          | 60         | 315211.5                  | 81.37156             |              |
|             | Cu                           |          | 63         | 636218.5                  | 71.7775              |              |
|             | Cu                           |          | 65         | 336689.2                  | 77.77581             |              |
| >           | Rh<br>Ho                     |          | 103<br>165 | 770543.4<br>1687975.4     |                      | ppb<br>ppb   |
|             | Kr                           |          | 83         | -664520.2                 |                      | mg/L         |
| Method 60   | 20 & 200.8                   | Metals S |            |                           |                      |              |
| Sample ID   | : 23131-3 Fl                 | н        |            |                           |                      |              |
|             |                              | eptemb   | er 29,     | 2014 11:13:3              | 2                    |              |
| Sample De   |                              |          |            |                           |                      |              |
| Concentra   | tion Results                 | Maaa     |            | Maga Intense              | Cono Moor            | Depart Linit |
|             | Analyte<br>Li                | Mass     | 6          | Meas. Intens (<br>78478.9 | Jonc. Mear           | ppb          |
| -           | Sc                           |          | 45         | 1119481.9                 |                      | ppb          |
|             | Ni                           |          | 60         | 177101.9                  | 45.66901             | • •          |
| i           | Cu                           |          | 63         | 301292.5                  | 33.94088             | ppb          |
|             | Cu                           |          | 65         | 171231.3                  | 39.49924             | • • .        |
| >           | Rh                           |          | 103        | 771272.7                  |                      | ppb          |
|             | Ho<br>Kr                     |          | 165<br>83  | 1681886<br>-671889.5      |                      | ppb<br>ma//  |
| Method 60   | 20 & 200.8                   | Metals S |            |                           |                      | mg/L         |
|             | : 23131-3 Fl                 |          | Julilin    | ary report                |                      |              |
| •           |                              |          | er 29,     | 2014 11:14:4              | 6                    |              |
| Sample De   | Derenzo                      |          |            |                           |                      |              |
| Concentra   | tion Results                 |          |            |                           |                      |              |
|             | Analyte                      | Mass     |            | Meas. Intens (            | Conc. Mear           |              |
| L.          | Li<br>Sc                     |          | 6<br>45    | 73558<br>1127747.1        |                      | ppb          |
| -           | Ni                           |          | 43<br>60   | 349568.1                  | 91.47587             | ppb<br>ppb   |
|             | Cu                           |          | 63         | 653757.1                  | 74.76548             | ••           |
| i           | Cu                           |          | 65         | 343299.8                  | 80.3895              |              |
| >           | Rh                           |          | 103        | 760158.2                  |                      | ppb          |
|             | Ho                           |          | 165        | 1674936                   |                      | ppb          |
|             | Kr                           |          | 83         | -664809.2                 |                      | mg/L         |
|             | 20 & 200.8  <br>: 23131-4 Fl |          | Summa      | агу кероп                 |                      |              |
|             |                              |          | or 29      | 2014 11:15:5              | q                    |              |
| Sample De   |                              | spromo   | 5. 20,     |                           | ~                    |              |
| •           | tion Results                 |          |            |                           |                      |              |
|             | Analyte                      | Mass     |            | Meas. Intens (            | Conc. Mear           | Report Unit  |
|             | Li                           |          | 6          | 68265.3                   |                      | ppb          |
| -           | Sc                           |          | 45         | 984812.6                  | 04 5044              | ppb          |
|             | Ni                           |          | 60<br>63   | 93213.2                   | 24.5911              | ••           |
|             | Cu<br>Cu                     |          | 63<br>65   | 178837.4<br>108975        | 20.60079<br>25.70983 |              |
| >           | Rh                           |          | 103        | 753752.2                  | 20.10303             | ppb          |
| '           | Но                           |          | 165        | 1665538.8                 |                      | ppb          |
|             | Kr                           |          | 83         | -664530.7                 |                      | mg/L         |
|             |                              |          |            |                           |                      |              |

| Method 60                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                                                                                             |                                                                                                                                                                                                                                                          |                                                                                             |                                                                                                                |
|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
|                                      | 20 & 200.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Metals S                                  | Summ                                                                                                        | ary Report                                                                                                                                                                                                                                               |                                                                                             |                                                                                                                |
| Sample ID:                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                                                                                             | , , ,                                                                                                                                                                                                                                                    |                                                                                             |                                                                                                                |
| Sample Da                            | Monday, S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | eptemb                                    | er 29,                                                                                                      | 2014 11:17:1                                                                                                                                                                                                                                             | 3                                                                                           |                                                                                                                |
| Sample De                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                                                                                             |                                                                                                                                                                                                                                                          |                                                                                             |                                                                                                                |
| Concentrat                           | tion Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |                                                                                                             |                                                                                                                                                                                                                                                          |                                                                                             |                                                                                                                |
|                                      | Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mass                                      | I                                                                                                           | Meas. Intens                                                                                                                                                                                                                                             | Conc. Mear                                                                                  | Report Unit                                                                                                    |
|                                      | Li                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                           | 6                                                                                                           | 137915.4                                                                                                                                                                                                                                                 |                                                                                             | ppb                                                                                                            |
| -                                    | Sc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                           | 45                                                                                                          | 612398.5                                                                                                                                                                                                                                                 |                                                                                             | ppb                                                                                                            |
|                                      | Ni                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                           | 60                                                                                                          | 3354.3                                                                                                                                                                                                                                                   | 0.59773                                                                                     |                                                                                                                |
|                                      | Cu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                           | 63                                                                                                          | 11227.3                                                                                                                                                                                                                                                  | 0.86055                                                                                     |                                                                                                                |
|                                      | Cu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                           | 65                                                                                                          | 5540.4                                                                                                                                                                                                                                                   | 0.86691                                                                                     |                                                                                                                |
| >                                    | Rh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                           | 103                                                                                                         | 1088201.7                                                                                                                                                                                                                                                |                                                                                             | ppb                                                                                                            |
|                                      | Ho                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                           | 165                                                                                                         | 1972594.5                                                                                                                                                                                                                                                |                                                                                             | ppb                                                                                                            |
|                                      | Kr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                           | 83                                                                                                          | 1045                                                                                                                                                                                                                                                     |                                                                                             | mg/L                                                                                                           |
|                                      | 20 & 200.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | vietais s                                 | summ                                                                                                        | ary Report                                                                                                                                                                                                                                               |                                                                                             |                                                                                                                |
| Sample ID:                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           | 00                                                                                                          | 004444.40.0                                                                                                                                                                                                                                              |                                                                                             |                                                                                                                |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | eptemp                                    | er 29,                                                                                                      | 2014 11:18:2                                                                                                                                                                                                                                             | 26                                                                                          |                                                                                                                |
| Sample De                            | tion Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |                                                                                                             |                                                                                                                                                                                                                                                          |                                                                                             |                                                                                                                |
| Concentrat                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mass                                      |                                                                                                             | Meas. Intens                                                                                                                                                                                                                                             | Cono Moor                                                                                   | Poport I Init                                                                                                  |
|                                      | Analyte<br>Li                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | IVIASS                                    | 6                                                                                                           | 146773.4                                                                                                                                                                                                                                                 | JUNC. IVIEA                                                                                 |                                                                                                                |
| -                                    | Sc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                           | 45                                                                                                          | 657686.1                                                                                                                                                                                                                                                 |                                                                                             | ppb<br>ppb                                                                                                     |
| 1                                    | Ni                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                           |                                                                                                             | 278465.3                                                                                                                                                                                                                                                 | 51.13663                                                                                    | ••                                                                                                             |
|                                      | Cu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                           | 63                                                                                                          | 619423.5                                                                                                                                                                                                                                                 | 49.70407                                                                                    |                                                                                                                |
|                                      | Cu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                           | 65                                                                                                          | 304902.7                                                                                                                                                                                                                                                 | 50.09543                                                                                    |                                                                                                                |
| >                                    | Rh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                           | 103                                                                                                         | 1083162.3                                                                                                                                                                                                                                                | 00.00040                                                                                    | ppb                                                                                                            |
| 1-                                   | Но                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                           | 165                                                                                                         | 1985668.2                                                                                                                                                                                                                                                |                                                                                             | ppb                                                                                                            |
|                                      | Kr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                           | 83                                                                                                          | 957.8                                                                                                                                                                                                                                                    |                                                                                             | mg/L                                                                                                           |
| Method 60                            | 20 & 200.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Metals S                                  |                                                                                                             |                                                                                                                                                                                                                                                          |                                                                                             | iiig/L                                                                                                         |
| Sample ID:                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | notalo c                                  | Jannin                                                                                                      |                                                                                                                                                                                                                                                          |                                                                                             |                                                                                                                |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | eptemb                                    | er 29.                                                                                                      | 2014 11:19:4                                                                                                                                                                                                                                             | 12                                                                                          |                                                                                                                |
| Sample De                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00101110                                  | 0. 20,                                                                                                      | 2011111011                                                                                                                                                                                                                                               | -                                                                                           |                                                                                                                |
|                                      | tion Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |                                                                                                             |                                                                                                                                                                                                                                                          |                                                                                             |                                                                                                                |
|                                      | Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mass                                      | 1                                                                                                           | Meas. Intens                                                                                                                                                                                                                                             | Conc. Mear                                                                                  | Report Unit                                                                                                    |
|                                      | Li                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                           | 6                                                                                                           | 127370.8                                                                                                                                                                                                                                                 |                                                                                             | ppb                                                                                                            |
| -                                    | Sc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                           | 45                                                                                                          | 498182.3                                                                                                                                                                                                                                                 |                                                                                             | ppb                                                                                                            |
| i                                    | Ni                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                           | 60                                                                                                          | 116.3                                                                                                                                                                                                                                                    | 0.00823                                                                                     | ••                                                                                                             |
| i                                    | Cu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                           | 63                                                                                                          | 635                                                                                                                                                                                                                                                      | 0.01964                                                                                     | ppb                                                                                                            |
| Ì                                    | Cu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                           | 65                                                                                                          | 317                                                                                                                                                                                                                                                      | 0.0178                                                                                      | ppb                                                                                                            |
| >                                    | Rh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                           | 103                                                                                                         | 975290                                                                                                                                                                                                                                                   |                                                                                             | ppb                                                                                                            |
|                                      | Ho                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                           | 165                                                                                                         | 1792909.8                                                                                                                                                                                                                                                |                                                                                             | ppb                                                                                                            |
|                                      | Kr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                           | 83                                                                                                          | 1069.9                                                                                                                                                                                                                                                   |                                                                                             | mg/L                                                                                                           |
| Method 602                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Motale 9                                  |                                                                                                             | arv Report                                                                                                                                                                                                                                               |                                                                                             |                                                                                                                |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | victais c                                 | Summa                                                                                                       |                                                                                                                                                                                                                                                          |                                                                                             |                                                                                                                |
|                                      | QC Std 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                           |                                                                                                             |                                                                                                                                                                                                                                                          |                                                                                             |                                                                                                                |
| Sample Da                            | : QC Std 4<br>i Monday, S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                           |                                                                                                             | 2014 11:20:5                                                                                                                                                                                                                                             | 56                                                                                          |                                                                                                                |
|                                      | : QC Std 4<br>i Monday, S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                           |                                                                                                             |                                                                                                                                                                                                                                                          | 56                                                                                          |                                                                                                                |
| Sample Da<br>Sample De               | : QC Std 4<br>i Monday, S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                           | er 29,                                                                                                      | 2014 11:20:5                                                                                                                                                                                                                                             |                                                                                             |                                                                                                                |
| Sample Da<br>Sample De               | : QC Std 4<br>Monday, S<br>escription:<br>tion Results<br>Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           | er 29,                                                                                                      | 2014 11:20:5<br>Meas. Intens (                                                                                                                                                                                                                           |                                                                                             |                                                                                                                |
| Sample Da<br>Sample De<br>Concentrat | : QC Std 4<br>Monday, S<br>escription:<br>tion Results<br>Analyte<br>Li                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | eptemb                                    | er 29,<br>6                                                                                                 | 2014 11:20:5<br>Meas. Intens (<br>127194.2                                                                                                                                                                                                               |                                                                                             | ppb                                                                                                            |
| Sample Da<br>Sample De               | : QC Std 4<br>Monday, S<br>escription:<br>tion Results<br>Analyte<br>Li<br>Sc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | eptemb                                    | er 29,<br>6<br>45                                                                                           | 2014 11:20:5<br>Meas. Intens (<br>127194.2<br>516393.2                                                                                                                                                                                                   | Conc. Mear                                                                                  | ppb<br>ppb                                                                                                     |
| Sample Da<br>Sample De<br>Concentrat | : QC Std 4<br>Monday, S<br>escription:<br>tion Results<br>Analyte<br>Li<br>Sc<br>Ni                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | eptemb                                    | er 29,<br>6<br>45<br>60                                                                                     | 2014 11:20:5<br>Meas. Intens (<br>127194.2<br>516393.2<br>474566.9                                                                                                                                                                                       | Conc. Mear<br>96.49196                                                                      | ppb<br>ppb<br>ppb                                                                                              |
| Sample Da<br>Sample De<br>Concentrat | : QC Std 4<br>Monday, S<br>escription:<br>tion Results<br>Analyte<br>Li<br>Sc<br>Ni<br>Cu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | eptemb                                    | er 29,<br>6<br>45<br>60<br>63                                                                               | 2014 11:20:5<br>Meas. Intens (<br>127194.2<br>516393.2<br>474566.9<br>1080777.7                                                                                                                                                                          | Conc. Mear<br>96.49196<br>96.04544                                                          | ppb<br>ppb<br>ppb<br>ppb                                                                                       |
| Sample Da<br>Sample De<br>Concentrat | CQC Std 4<br>Monday, S<br>escription:<br>tion Results<br>Analyte<br>Li<br>Sc<br>Ni<br>Cu<br>Cu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | eptemb                                    | er 29,<br>6<br>45<br>60<br>63<br>65                                                                         | 2014 11:20:5<br>Meas. Intens (<br>127194.2<br>516393.2<br>474566.9<br>1080777.7<br>533695.2                                                                                                                                                              | Conc. Mear<br>96.49196                                                                      | ppb<br>ppb<br>ppb<br>ppb<br>ppb                                                                                |
| Sample Da<br>Sample De<br>Concentrat | CQC Std 4<br>Monday, S<br>escription:<br>tion Results<br>Analyte<br>Li<br>Sc<br>Ni<br>Cu<br>Cu<br>Cu<br>Rh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | eptemb                                    | er 29,<br>6<br>45<br>60<br>63<br>65<br>103                                                                  | 2014 11:20:5<br>Meas. Intens (<br>127194.2<br>516393.2<br>474566.9<br>1080777.7<br>533695.2<br>978397.1                                                                                                                                                  | Conc. Mear<br>96.49196<br>96.04544                                                          | ppb<br>ppb<br>ppb<br>ppb<br>ppb<br>ppb                                                                         |
| Sample Da<br>Sample De<br>Concentrat | : QC Std 4<br>Monday, S<br>scription:<br>ion Results<br>Analyte<br>Li<br>Sc<br>Ni<br>Cu<br>Cu<br>Cu<br>Rh<br>Ho                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | eptemb                                    | er 29,<br>6<br>45<br>60<br>63<br>65<br>103<br>165                                                           | 2014 11:20:5<br>Meas. Intens (<br>127194.2<br>516393.2<br>474566.9<br>1080777.7<br>533695.2<br>978397.1<br>1821347.2                                                                                                                                     | Conc. Mear<br>96.49196<br>96.04544                                                          | ppb<br>ppb<br>ppb<br>ppb<br>ppb<br>ppb<br>ppb                                                                  |
| Sample Da<br>Sample De<br>Concentrat | Cu C Std 4<br>Monday, S<br>scription:<br>ion Results<br>Analyte<br>Li<br>Sc<br>Ni<br>Cu<br>Cu<br>Cu<br>Rh<br>Ho<br>Kr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | eptemb<br>Mass                            | er 29,<br>6<br>45<br>60<br>63<br>65<br>103<br>165<br>83                                                     | 2014 11:20:5<br>Meas. Intens (<br>127194.2<br>516393.2<br>474566.9<br>1080777.7<br>533695.2<br>978397.1<br>1821347.2<br>-35015.6                                                                                                                         | Conc. Mear<br>96.49196<br>96.04544                                                          | ppb<br>ppb<br>ppb<br>ppb<br>ppb<br>ppb                                                                         |
| Sample Da<br>Sample De<br>Concentrat | Cu C Std 4<br>Monday, S<br>scription:<br>ion Results<br>Analyte<br>Li<br>Sc<br>Ni<br>Cu<br>Cu<br>Cu<br>Rh<br>Ho<br>Kr<br>20 & 200.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | eptemb<br>Mass<br>Metals S                | er 29,<br>6<br>45<br>60<br>63<br>65<br>103<br>165<br>83                                                     | 2014 11:20:5<br>Meas. Intens (<br>127194.2<br>516393.2<br>474566.9<br>1080777.7<br>533695.2<br>978397.1<br>1821347.2<br>-35015.6                                                                                                                         | Conc. Mear<br>96.49196<br>96.04544                                                          | ppb<br>ppb<br>ppb<br>ppb<br>ppb<br>ppb<br>ppb                                                                  |
| Sample Da<br>Sample De<br>Concentrat | Cu C Std 4<br>Monday, S<br>scription:<br>ion Results<br>Analyte<br>Li<br>Sc<br>Ni<br>Cu<br>Cu<br>Cu<br>Rh<br>Ho<br>Kr<br>20 & 200.8 1<br>: 23131-1 B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | eptemb<br>Mass<br>Matals S<br>H           | er 29,<br>6<br>45<br>60<br>63<br>65<br>103<br>165<br>83<br>Summ                                             | 2014 11:20:5<br>Meas. Intens (<br>127194.2<br>516393.2<br>474566.9<br>1080777.7<br>533695.2<br>978397.1<br>1821347.2<br>-35015.6<br>ary Report                                                                                                           | Conc. Mear<br>96.49196<br>96.04544<br>97.10872                                              | ppb<br>ppb<br>ppb<br>ppb<br>ppb<br>ppb<br>ppb                                                                  |
| Sample Da<br>Sample De<br>Concentrat | : QC Std 4<br>Monday, S<br>scription:<br>ion Results<br>Analyte<br>Li<br>Sc<br>Ni<br>Cu<br>Cu<br>Cu<br>Cu<br>Rh<br>Ho<br>Kr<br>20 & 200.8 I<br>: 23131-1 B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | eptemb<br>Mass<br>Matals S<br>H           | er 29,<br>6<br>45<br>60<br>63<br>65<br>103<br>165<br>83<br>Summ                                             | 2014 11:20:5<br>Meas. Intens (<br>127194.2<br>516393.2<br>474566.9<br>1080777.7<br>533695.2<br>978397.1<br>1821347.2<br>-35015.6                                                                                                                         | Conc. Mear<br>96.49196<br>96.04544<br>97.10872                                              | ppb<br>ppb<br>ppb<br>ppb<br>ppb<br>ppb<br>ppb                                                                  |
| Sample Da<br>Sample De<br>Concentrat | Cu C Std 4<br>Monday, S<br>scription:<br>ion Results<br>Analyte<br>Li<br>Sc<br>Ni<br>Cu<br>Cu<br>Cu<br>Cu<br>Rh<br>Ho<br>Kr<br>20 & 200.8 I<br>: 23131-1 B<br>Monday, S<br>e Derenzo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | eptemb<br>Mass<br>Matals S<br>H           | er 29,<br>6<br>45<br>60<br>63<br>65<br>103<br>165<br>83<br>Summ                                             | 2014 11:20:5<br>Meas. Intens (<br>127194.2<br>516393.2<br>474566.9<br>1080777.7<br>533695.2<br>978397.1<br>1821347.2<br>-35015.6<br>ary Report                                                                                                           | Conc. Mear<br>96.49196<br>96.04544<br>97.10872                                              | ppb<br>ppb<br>ppb<br>ppb<br>ppb<br>ppb<br>ppb                                                                  |
| Sample Da<br>Sample De<br>Concentrat | CQC Std 4<br>Monday, S<br>scription:<br>ion Results<br>Analyte<br>Li<br>Sc<br>Ni<br>Cu<br>Cu<br>Rh<br>Ho<br>Kr<br>20 & 200.8  <br>: 23131-1 B<br>Monday, S<br>Derenzo<br>ion Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | eptemb<br>Mass<br>Metals S<br>H<br>eptemb | er 29,<br>6<br>45<br>60<br>63<br>65<br>103<br>165<br>83<br>Summ<br>er 29,                                   | 2014 11:20:5<br>Meas. Intens (<br>127194.2<br>516393.2<br>474566.9<br>1080777.7<br>533695.2<br>978397.1<br>1821347.2<br>-35015.6<br>ary Report<br>2014 11:22:1                                                                                           | Conc. Mear<br>96.49196<br>96.04544<br>97.10872<br>2                                         | ppb<br>ppb<br>ppb<br>ppb<br>ppb<br>ppb<br>ppb<br>mg/L                                                          |
| Sample Da<br>Sample De<br>Concentrat | CQC Std 4<br>Monday, S<br>scription:<br>ion Results<br>Analyte<br>Li<br>Sc<br>Ni<br>Cu<br>Rh<br>Ho<br>Kr<br>20 & 200.8  <br>Cu<br>23131-1 B<br>Monday, S<br>Derenzo<br>ion Results<br>Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | eptemb<br>Mass<br>Matals S<br>H           | er 29,<br>6<br>45<br>60<br>63<br>103<br>165<br>83<br>Summ<br>er 29,                                         | 2014 11:20:5<br>Meas. Intens (<br>127194.2<br>516393.2<br>474566.9<br>1080777.7<br>533695.2<br>978397.1<br>1821347.2<br>-35015.6<br>ary Report<br>2014 11:22:1<br>Meas. Intens (                                                                         | Conc. Mear<br>96.49196<br>96.04544<br>97.10872<br>2                                         | ppb<br>ppb<br>ppb<br>ppb<br>ppb<br>ppb<br>ppb<br>mg/L<br>Report Unit                                           |
| Sample Da<br>Sample De<br>Concentrat | Cu C Std 4<br>Monday, S<br>scription:<br>ion Results<br>Analyte<br>Li<br>Sc<br>Ni<br>Cu<br>Cu<br>Cu<br>Rh<br>Ho<br>Kr<br>20 & 200.8  <br>: 23131-1 B<br>Monday, S<br>Derenzo<br>ion Results<br>Analyte<br>Li                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | eptemb<br>Mass<br>Metals S<br>H<br>eptemb | er 29,<br>6<br>45<br>60<br>63<br>65<br>103<br>165<br>83<br>Summ<br>er 29,<br>6                              | 2014 11:20:5<br>Meas. Intens (<br>127194.2<br>516393.2<br>474566.9<br>1080777.7<br>533695.2<br>978397.1<br>1821347.2<br>-35015.6<br>ary Report<br>2014 11:22:1<br>Meas. Intens (<br>136986.3                                                             | Conc. Mear<br>96.49196<br>96.04544<br>97.10872<br>2                                         | ppb<br>ppb<br>ppb<br>ppb<br>ppb<br>ppb<br>ppb<br>mg/L<br>Report Unit<br>ppb                                    |
| Sample Da<br>Sample De<br>Concentrat | Cu C Std 4<br>Monday, S<br>scription:<br>ion Results<br>Analyte<br>Li<br>Sc<br>Ni<br>Cu<br>Cu<br>Cu<br>Cu<br>Cu<br>Cu<br>Cu<br>Cu<br>Cu<br>Cu<br>Cu<br>Cu<br>Cu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | eptemb<br>Mass<br>Metals S<br>H<br>eptemb | er 29,<br>6<br>45<br>60<br>63<br>65<br>103<br>165<br>83<br>Summ<br>er 29,<br>6<br>45                        | 2014 11:20:5<br>Meas. Intens (<br>127194.2<br>516393.2<br>474566.9<br>1080777.7<br>533695.2<br>978397.1<br>1821347.2<br>-35015.6<br>ary Report<br>2014 11:22:1<br>Meas. Intens (<br>136986.3<br>624885.3                                                 | Conc. Mear<br>96.49196<br>96.04544<br>97.10872<br>2<br>Conc. Mear                           | ppb<br>ppb<br>ppb<br>ppb<br>ppb<br>ppb<br>ppb<br>mg/L<br>Report Unit<br>ppb<br>ppb                             |
| Sample Da<br>Sample De<br>Concentrat | : QC Std 4<br>Monday, S<br>scription:<br>ion Results<br>Analyte<br>Li<br>Sc<br>Ni<br>Cu<br>Cu<br>Cu<br>Cu<br>Cu<br>Cu<br>Cu<br>Cu<br>Cu<br>Cu<br>Cu<br>Cu<br>Cu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | eptemb<br>Mass<br>Metals S<br>H<br>eptemb | er 29,<br>6<br>45<br>60<br>63<br>65<br>103<br>165<br>83<br>Summa<br>er 29,<br>6<br>45<br>60                 | 2014 11:20:5<br>Meas. Intens (<br>127194.2<br>516393.2<br>474566.9<br>1080777.7<br>533695.2<br>978397.1<br>1821347.2<br>-35015.6<br>ary Report<br>2014 11:22:1<br>Meas. Intens (<br>136986.3<br>624885.3<br>24476.2                                      | Conc. Mear<br>96.49196<br>96.04544<br>97.10872<br>2<br>2<br>Conc. Mear<br>4.6501            | ppb<br>ppb<br>ppb<br>ppb<br>ppb<br>ppb<br>mg/L<br>Report Unit<br>ppb<br>ppb<br>ppb                             |
| Sample Da<br>Sample De<br>Concentrat | : QC Std 4<br>Monday, S<br>scription:<br>ion Results<br>Analyte<br>Li<br>Sc<br>Ni<br>Cu<br>Cu<br>Rh<br>Ho<br>Kr<br>20 & 200.8  <br>: 23131-1 B<br>Monday, S<br>Derenzo<br>ion Results<br>Analyte<br>Li<br>Sc<br>Ni<br>Cu<br>Cu<br>Rh<br>Ho<br>Kr<br>20 & 200.8  <br>: 23131-1 B<br>Monday, S<br>Cu<br>Derenzo<br>ion Results<br>Analyte<br>Li<br>Sc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | eptemb<br>Mass<br>Metals S<br>H<br>eptemb | er 29,<br>6<br>45<br>60<br>63<br>65<br>103<br>165<br>83<br>Summ.<br>6<br>6<br>45<br>60<br>63                | 2014 11:20:5<br>Meas. Intens (<br>127194.2<br>516393.2<br>474566.9<br>1080777.7<br>533695.2<br>978397.1<br>1821347.2<br>-35015.6<br>ary Report<br>2014 11:22:1<br>Meas. Intens (<br>136986.3<br>624885.3<br>24476.2<br>562991.1                          | Conc. Mear<br>96.49196<br>96.04544<br>97.10872<br>2<br>2<br>Conc. Mear<br>4.6501<br>46.8724 | ppb<br>ppb<br>ppb<br>ppb<br>ppb<br>ppb<br>mg/L<br>Report Unit<br>ppb<br>ppb<br>ppb<br>ppb                      |
| Sample Da<br>Sample De<br>Concentrat | Cu Constant and the constant of the constant o | eptemb<br>Mass<br>Metals S<br>H<br>eptemb | er 29,<br>6<br>45<br>60<br>63<br>65<br>103<br>165<br>83<br>30<br>wmm<br>er 29,<br>6<br>45<br>60<br>63<br>65 | 2014 11:20:5<br>Meas. Intens (<br>127194.2<br>516393.2<br>474566.9<br>1080777.7<br>533695.2<br>978397.1<br>1821347.2<br>-35015.6<br>ary Report<br>2014 11:22:1<br>Meas. Intens (<br>136986.3<br>624885.3<br>24476.2<br>562991.1<br>274856.9              | Conc. Mear<br>96.49196<br>96.04544<br>97.10872<br>2<br>2<br>Conc. Mear<br>4.6501            | ppb<br>ppb<br>ppb<br>ppb<br>ppb<br>ppb<br>mg/L<br>Report Unit<br>ppb<br>ppb<br>ppb<br>ppb<br>ppb               |
| Sample Da<br>Sample De<br>Concentrat | Cu C Std 4<br>Monday, S<br>scription:<br>ion Results<br>Analyte<br>Li<br>Sc<br>Ni<br>Cu<br>Cu<br>Rh<br>Ho<br>Kr<br>20 & 200.8  <br>23131-1 B<br>Monday, S<br>Derenzo<br>ion Results<br>Analyte<br>Li<br>Sc<br>Ni<br>Cu<br>Cu<br>Rh<br>Monday, S<br>Cu<br>Cu<br>Rh<br>Monday, S<br>Cu<br>Cu<br>Cu<br>Rh<br>Monday, S<br>Cu<br>Cu<br>Cu<br>Cu<br>Rh<br>Monday, S<br>Cu<br>Cu<br>Cu<br>Cu<br>Rh<br>Monday, S<br>Cu<br>Cu<br>Cu<br>Rh<br>Monday, S<br>Cu<br>Cu<br>Cu<br>Rh<br>Monday, S<br>Cu<br>Cu<br>Cu<br>Rh<br>Monday, S<br>Cu<br>Cu<br>Cu<br>Rh<br>Monday, S<br>Cu<br>Cu<br>Cu<br>Rh<br>Monday, S<br>Cu<br>Cu<br>Cu<br>Rh<br>Monday, S<br>Cu<br>Cu<br>Cu<br>Cu<br>Cu<br>Cu<br>Cu<br>Cu<br>Cu<br>Cu<br>Cu<br>Cu<br>Cu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | eptemb<br>Mass<br>Metals S<br>H<br>eptemb | er 29,<br>6<br>45<br>60<br>63<br>165<br>83<br>165<br>83<br>Summa<br>6<br>6<br>45<br>60<br>63<br>65<br>103   | 2014 11:20:5<br>Meas. Intens (<br>127194.2<br>516393.2<br>474566.9<br>1080777.7<br>533695.2<br>978397.1<br>1821347.2<br>-35015.6<br>ary Report<br>2014 11:22:1<br>Meas. Intens (<br>136986.3<br>624885.3<br>24476.2<br>562991.1<br>274856.9<br>1044198.2 | Conc. Mear<br>96.49196<br>96.04544<br>97.10872<br>2<br>2<br>Conc. Mear<br>4.6501<br>46.8724 | ppb<br>ppb<br>ppb<br>ppb<br>ppb<br>ppb<br>mg/L<br>Report Unit<br>ppb<br>ppb<br>ppb<br>ppb<br>ppb<br>ppb<br>ppb |
| Sample Da<br>Sample De<br>Concentrat | Cu Constant and the constant of the constant o | eptemb<br>Mass<br>Metals S<br>H<br>eptemb | er 29,<br>6<br>45<br>60<br>63<br>65<br>103<br>165<br>83<br>30<br>wmm<br>er 29,<br>6<br>45<br>60<br>63<br>65 | 2014 11:20:5<br>Meas. Intens (<br>127194.2<br>516393.2<br>474566.9<br>1080777.7<br>533695.2<br>978397.1<br>1821347.2<br>-35015.6<br>ary Report<br>2014 11:22:1<br>Meas. Intens (<br>136986.3<br>624885.3<br>24476.2<br>562991.1<br>274856.9              | Conc. Mear<br>96.49196<br>96.04544<br>97.10872<br>2<br>2<br>Conc. Mear<br>4.6501<br>46.8724 | ppb<br>ppb<br>ppb<br>ppb<br>ppb<br>ppb<br>mg/L<br>Report Unit<br>ppb<br>ppb<br>ppb<br>ppb<br>ppb               |

| PerkinEim  | IEF ELAN 6   | 100 IC   | P-1VI5     | •                      |                     |             |
|------------|--------------|----------|------------|------------------------|---------------------|-------------|
| Method 60  | 20 & 200.8   | Vetals S | Summ       | ary Report             |                     |             |
| Sample ID: | 23131-2 Bl   | н        |            |                        |                     |             |
| Sample Da  | i Monday, S  | eptemb   | er 29,     | 2014 11:23:2           | 5                   |             |
| Sample De  |              |          |            |                        |                     |             |
| Concentrat | ion Results  |          |            |                        |                     | -           |
|            | Analyte      | Mass     |            | Meas. Intens (         | Conc. Mear          |             |
|            | Li           |          | 6          | 130891.7               |                     | ppb         |
| -          | Sc           |          | 45         | 567678.1               | 4 70470             | ppb         |
|            | Ni<br>Cu     |          | 60<br>63   | 24553.4<br>173995.3    | 4.78176<br>14.82322 |             |
|            | Cu           |          | 65         | 85035.3                | 14.83031            |             |
| >          | Rh           |          | 103        | 1018478.4              | 14.00001            | ppb         |
| 1-         | Ho           |          | 165        | 1887685.6              |                     | ppb         |
|            | Kr           |          | 83         | -500.2                 |                     | mg/L        |
| Method 60  | 20 & 200.8   | Vetals S | Summ       | ary Report             |                     | 5           |
| Sample ID: | : 23131-2 Bl | н        |            |                        |                     |             |
| Sample Da  | n Monday, S  | eptemb   | er 29,     | 2014 11:24:3           | 9                   |             |
| Sample De  |              |          |            |                        |                     |             |
| Concentrat | tion Results |          |            |                        |                     |             |
|            | Analyte      | Mass     |            | Meas. Intens (         | Conc. Mear          |             |
|            | Li           |          | 6          | 134450.3               |                     | ppb         |
| -          | Sc           |          | 45         | 583099.5               | 4 9 4 9 9 9         | ppb         |
|            | Ni<br>Cu     |          | 60<br>63   | 25062.5<br>174124.8    | 4.84992<br>14.74004 |             |
|            | Cu           |          | 65         | 86076.9                | 14.91649            |             |
| >          | Rh           |          | 103        | 1025099.9              | 14.31043            | ppb         |
| 1-         | Но           |          | 165        | 1927801                |                     | ppb         |
|            | Kr           |          | 83         | -528.7                 |                     | mg/L        |
| Method 60  | 20 & 200.8 I | Vetals S |            |                        |                     |             |
|            | 23131-3 B    |          |            |                        |                     |             |
|            |              |          | er 29,     | 2014 11:25:5           | 3                   |             |
| Sample De  |              |          |            |                        |                     |             |
| Concentrat | tion Results |          |            |                        |                     |             |
|            | Analyte      | Mass     |            | Meas. Intens (         | Conc. Mear          | Report Unit |
|            | Li           |          | 6          | 137368.4               |                     | ppb         |
| -          | Sc           |          | 45         | 581323.9               |                     | ppb         |
|            | Ni           |          | 60         | 26090.1                | 5.02109             |             |
|            | Cu           |          | 63<br>65   | 73067.1                | 6.12939<br>6.19115  |             |
|            | Cu<br>Rh     |          | 65<br>103  | 36060<br>1030662.8     | 0.19115             | · · .       |
| >          | Но           |          | 165        | 1939720.6              |                     | ppb<br>ppb  |
|            | Kr           |          | 83         | 84.9                   |                     | mg/L        |
| Method 60  | 20 & 200.8 I | Vetals S |            |                        |                     |             |
|            | 23131-3 B    |          |            |                        |                     |             |
|            |              |          | er 29,     | 2014 11:27:0           | 6                   |             |
| Sample De  |              |          |            |                        |                     |             |
| Concentrat | tion Results |          |            |                        |                     |             |
|            | Analyte      | Mass     |            | Meas. Intens (         | Conc. Mear          | Report Unit |
|            | Li           |          | 6          | 140347.1               |                     | ppb         |
| -          | Sc           |          | 45         | 573503                 | FA 4747-            | ppb         |
|            | Ni           |          | 60         | 276419                 | 54.47475            |             |
|            | Cu           |          | 63         | 628601.9               | 54.13763            |             |
|            | Cu<br>Rh     |          | 65         | 310431.6               | 54.73786            |             |
| >          | Но           |          | 103<br>165 | 1009259.4<br>1919661.3 |                     | ppb         |
|            | Kr           |          | 83         | 78.5                   |                     | ppb<br>mg/L |
| Method 60  | 20 & 200.8   | Metals S |            |                        |                     | ilig/L      |
|            | : 23131-4 Bl |          | Jumm       | ary report             |                     |             |
|            |              |          | er 29.     | 2014 11:28:2           | 0                   |             |
| Sample De  |              | -1       | ,          |                        | -                   |             |
|            | tion Results |          |            |                        |                     |             |
|            | Analyte      | Mass     |            | Meas. Intens           | Conc. Mear          | Report Unit |
|            | Li           |          | 6          | 147136.6               |                     | ppb         |
| -          | Sc           |          | 45         | 606221.4               |                     | ppb         |
|            | Ni           |          | 60         | 18120.4                | 3.45723             | ppb         |
|            | Cu           |          | 63         | 11998.9                | 0.96832             |             |
| 1          | Cu           |          | 65         | 5894.6                 | 0.97105             | •••         |
| >          | Rh           |          | 103        | 1038226.8              |                     | ppb         |
|            | Ho           |          | 165        | 1975487.1              |                     | ppb<br>mg/l |
|            | Kr           |          | 83         | 814.3                  |                     | mg/L        |
|            |              |          |            |                        |                     |             |

### element**One** e 23131-Metals

Method 6020 & 200.8 Metals Summary Report Sample ID: QC Std 1 Sample Da Monday, September 29, 2014 11:29:35 Sample Description: Concentration Results

| Concentra  | tion Results |          |     |                |                        |
|------------|--------------|----------|-----|----------------|------------------------|
|            | Analyte      | Mass     | 1   | Meas. Intens C | Conc. Mear Report Unit |
|            | Li           |          | 6   | 132657.4       | ppb                    |
| -          | Sc           |          | 45  | 486212.2       | ppb                    |
| 1          | Ni           |          | 60  | 82             | 0.00169 ppb            |
| Ì          | Cu           |          | 63  | 407            | 0.00032 ppb            |
|            | Cu           |          | 65  | 214            | 0.0001 ppb             |
| >          | Rh           |          | 103 | 948470.6       | ppb                    |
|            | Ho           |          | 165 | 1786606.3      | ppb                    |
|            | Kr           |          | 83  | 1076.5         | mg/L                   |
| Matha d CC |              | Matala C |     |                |                        |

Method 6020 & 200.8 Metals Summary Report

Sample ID: QC Std 4 Sample Dai Monday, September 29, 2014 11:30:49

Sample Description: Concentration Results

|   | Analyte | Mass | I   | Meas. Intens | Conc. Mear Report Unit |
|---|---------|------|-----|--------------|------------------------|
|   | Li      |      | 6   | 131543       | ppb                    |
| - | Sc      |      | 45  | 499712.1     | ppb                    |
|   | Ni      |      | 60  | 463770.7     | 95.81318 ppb           |
|   | Cu      |      | 63  | 1064984.3    | 96.16586 ppb           |
|   | Cu      |      | 65  | 518610.2     | 95.88186 ppb           |
| > | Rh      |      | 103 | 962915.4     | ppb                    |
|   | Ho      |      | 165 | 1818278.8    | ppb                    |
|   | Kr      |      | 83  | -34250.7     | mg/L                   |

# APPENDIX F

# FIELD SAMPLING DATA SHEETS AND COMPUTER GENERATED CALCULATION SHEETS

Tem Tem Net Gain j. 65 (m)/g/ Ś 20 66 62 ļ 64 0.44(%CO<sub>2</sub>)+0.32(%O<sub>2</sub>)+0.28(%N<sub>2</sub>+%CO) 66 Se si 67 66 5 1 6 ŝ Z 3 60 60 6 0 Filter Box 3.45 C (Md)(1-(Bws/100))+18(Bws/100) 500 253 252 253 Initial Wt **P**S3 252 253 aso as6 258 Sys ast 256 ž ž 248 249 2S4 36 м У Ð aS. 341 1 Pbar + (AH@/13.6) Pbar + (Pstat/13.6) Probe (°F) 3SU Yc= (10/Vm)\*((0.0319\*(Tm))/Pb)^0.5 83.5 253 252 253 253 252 256 253 (m/g) 2550 250 Final Wt 253 253 253 253 233 <u>us</u> asy 252 \$95 والالا 254 ļ 2S Ŕ Silica Gel Impinger 63 20 (°F) Tr 62 NM 88 64 2nd S 2 벓 3rd ñ Interest Temp. ١ 74 8 P  $\otimes$ B ٩ 83 2220 l LAFA 845.6 Ps = 2055 = pw = sM E H N 28 20 20 63 8 Ö 285 ۱ 69 23 퇴원 5 ۱ £ ١ 5 ۶ 92.069 92.069 83.25 167.78 209.01 64.16 69.04 73.91 200.91 205.01 60,83 Sample Vol (ft3) 8.888 127.25 134.98 41.413 123.07 1,0138 57.5 120.14 78.6 1 20.9 38.51 45.7 0.0 <u>41.41</u> <u>S</u>I.1 0.84 ы S Molecular Weight (%) Meter Yd Factor Leak Rate Initial Leak Rate Final 00 Š 6 2,38 2,30 36 12 2.07 3 (Ps/Pm) **Fraverse** points "H2O) AH 2.53 Differential 2. 44 . 27 2.09 2.45 <u>a.86</u> a.74 2 53 Orifice 3.2 6, 2.40 ł Ì ó 9 Pitot Cp ł ő ő Note: All temperatures are °R (°F+460) \* ((1-(Bws/100))^2) \* (MdMs) \* 0.50 Velocity Pressure ("H2O) AP 0.42 660 0.59 0.96 0.75 0.80 20.1 0.000 1.28 0.7 35 0.9 0,6 3.34% N-1 (37.548 Probe 6F 17.9 Stack Temp Ts (°F) 200 8 67 89 ļ 2020 Sq 59 55 00 B б. Д ۱ هم 010 6 0 ھ Cond.Vol. (Vlc-1) SG Gain (Vlc-2) Nozzle Dia (in.) Assumed H20 o M Meter Number **Pitot Number** 3.5 (Cp^2) \* <u>)</u> 00 Vacuum 3, 5 5.2 00 é é S,O 8,0 5.0 Train s:0 6.0 5'2 ("Hg) Delta H@ 0 V 0 Q t ۱ Kiso 25:01 12:20 2:02 04:21 04:21 51:61 13:07 13:12 Sampling Time Time 1:00 01:61 12:57 13:37 3:37 13:17 Ř Ch:r 12:20 3.50 3:55 (24 hour) 64:61 \* (@HV) 1:00 4:0S 4:10 1W/JL 022614 4/16/14 38.84 Eagle 126 30 (Hill) 25 30 랑첫 <u>5</u> 20 20 20 20 100 0 Ś 5 00 20 5 60 05 0 ž BC  $\Delta H = Mf * (Tm/Ts) * (\Delta P)$ \*(₽¤Д) Source Designation Nozzle Determination: Static Press (Ps) Filter Numbers Bar. Press (Pb) Stack Dia (in.) Traverse Point **Fest Number** Mf = 846.72 \* Mf = 846.72 \* ( Number **Fest Date** Operator Company 4 Å 5 ł M Ś m 9 ๙ 3 2 F 5 Mf=

Isokinetic Field Sampling Data Sheet

DERENZO AND ASSOCIATES, INC.

Dn \*1.05=

∆H@ / Kiso\*(Cp)^2\*(1-(Bws/100))^2\*(MdMs)\*(Ps/Pm)\*(Tm/Ts)\* ΔP<sub>(م</sub>رسوه) =

(Recommend multiplying calculate nozzle size by 5%)

(Vwc+Vwsg)/(Vwc+Vwsg+Vm)

Bws =

Vwc = \_

0.04706(Vf-Vi) 0.04715(Wf-Wi) Isokinetic Field Sampling Data Sheet

| Constraine         Longe (1)                                                                        |                         | L<br>Z                | , Mer             |                                       |                   |                       |                                      |                 |                  |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------------|-------------------|---------------------------------------|-------------------|-----------------------|--------------------------------------|-----------------|------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------|
| Main         1/1/1/1         Main                                                                                                                                                                                                                                       | npany<br>urce Designati |                       | NVAR<br>NVAR      |                                       | 4                 | 270                   |                                      | N I DA          |                  |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · · · · · · · · · · · · · · · · · · · |            |
| Martine         Text (A)         Martine         24         Martine         Martine         24         Martine         24         Martine         24         Martine         24         Martine         24         Martine                                                                                                                                                                             | t Date<br>t Number      | 1                     |                   | Pitot Number<br>Meter Number          | 90 I - N          | 0                     | Leak Rate Initial<br>Leak Rate Final |                 |                  | Imninger          | Final Wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Initial Wt                            | Net Gain   |
| Containe                                                                                                        | erator                  | 7                     | II.               | Kiso                                  | 1639.             | 548                   | Traverse points                      |                 |                  |                   | 609.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 160-1                                 | 25 - 8.    |
| Three (in)         - (0.5)         - (0.15)         (0.1)         - (0.15)         (0.1)         - (0.15)         (0.1)         - (0.15)         (0.1)         - (0.15)         (0.1)         - (0.15)         (0.1)         - (0.15)         (0.1)         - (0.15)         (0.1)         - (0.15)         (0.1)         - (0.15)         (0.1)         - (0.15)         (0.1)         - (0.15)         (0.1)         - (0.15)         (0.1)         - (0.15)         (0.1)         - (0.15)         (0.1)         - (0.15)         (0.1)         - (0.15)         (0.1)         - (0.15)         (0.1)         - (0.15)         (0.1)         - (0.15)         (0.1)         - (0.15)         (0.1)         - (0.15)         (0.1)         - (0.15)         (0.1)         - (0.15)         (0.1)         - (0.15)         (0.1)         - (0.15)         (0.1)         - (0.15)         (0.1)         - (0.15)         (0.1)         - (0.15)         (0.1)         - (0.15)         - (0.15)         - (0.15)         - (0.15)         - (0.15)         - (0.15)         - (0.15)         - (0.15)         - (0.15)         - (0.15)         - (0.15)         - (0.15)         - (0.15)         - (0.15)         - (0.15)         - (0.15)         - (0.15)         - (0.15)         - (0.15)         - (0.15)         - (0.15)         - (                                                                                                                               | er Numbers              | OBJOH                 | 33                | Delta H@                              | 1,8,1             | 8                     | _ Pitot Cp                           | 0.84            | - 6875           |                   | 4569                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 46.7                                  | 8.0        |
| Constraint         Constraint <thconstraint< th="">         Constraint         Constrai</thconstraint<>                          | c. Press (Pb)           | 20-1                  | 200               | Assumed H2O                           |                   | 34 %                  | _Meter Yd Factor                     | 4               | 1.09 -           |                   | 603.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (21)                                  | 81.5       |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ck Dia (in.)            | 126                   | a                 | Cont. Vol. (Vic-1)<br>SG Gain (Vic-2) |                   | -~                    |                                      |                 | 14 06            |                   | 425.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 777                                   | 5          |
| Marrier manual         State manua |                         |                       |                   | Nozzle Dia (in.)                      |                   | 19                    | 5 00                                 | 0.0             | 1.1              |                   | in the second se | 1 1 1 1                               | 5          |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         | Samplia               | ing Time          | Train                                 | Stack             | Velocity              | Orifice                              | Sample          | DGM              | Temp.             | Probe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Filter Box                            | Last Imp.  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | averse Point<br>Number  | (Min)<br>ø            | Time<br>(24 hour) | Vacuum<br>("Hg)                       | Temp<br>Ts (°F)   | Pressure<br>("H2O) AP | Differential<br>("H2O) AH            | Vol (ft3)<br>Vm | Inlet<br>(°F) Tm | Outlet<br>(°F) Tm | Temp<br>°Pi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Temp<br>(°Fi                          | Temp.      |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                       | Ø                     | 15:00             | 4                                     | 60                | 0.95                  | 74.6                                 | 6               | 115              | 84                | 255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Che                                   | 2          |
| 3     10     15/10     4/10     6/10     0.15/15     0.33.16     7/15     8/1     0.55/14     4/2     0.55/14     0.55/14     0.55/14     0.55/14     0.55/14     0.55/14     0.55/14     0.55/14     0.55/14     0.55/14     0.55/14     0.55/14     0.55/14     0.55/14     0.55/14     0.55/14     0.55/14     0.55/14     0.55/14     0.55/14     0.55/14     0.55/14     0.55/14     0.55/14     0.55/14     0.55/14     0.55/14     0.55/14     0.55/14     0.55/14     0.55/14     0.55/14     0.55/14     0.55/14     0.55/14     0.55/14     0.55/14     0.55/14     0.55/14     0.55/14     0.55/14     0.55/14     0.55/14     0.55/14     0.55/14     0.55/14     0.55/14     0.55/14     0.55/14     0.55/14     0.55/14     0.55/14     0.55/14     0.55/14     0.55/14     0.55/14     0.55/14     0.55/14     0.55/14     0.55/14     0.55/14     0.55/14     0.55/14     0.55/14     0.55/14     0.55/14     0.55/14     0.55/14     0.55/14     0.55/14     0.55/14     0.55/14     0.55/14     0.55/14     0.55/14     0.55/14     0.55/14     0.55/14     0.55/14     0.55/14     0.55/14     0.55/14     0.55/14     0.55/14     0.55/14     0.5/14     0.55/14     0.                                                                                                                                                                                                                                                                                  | 3                       | S                     | 15:05             | 10                                    | 207               | 0.89                  | 200                                  |                 | 202              | , K               | して                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 200                                   | 600        |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | M                       | 01                    | 15:10             | 5                                     | 203               | 0.85                  | 2.2.2                                | 225,43          | 60               | ž                 | 256                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 150                                   |            |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4                       | S                     | 15:15             | 50,4                                  | 66                | 0.75                  | 79.1                                 | 229.70          | 26               | ¥                 | 355                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 250                                   | 67         |
| $ \left( \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | s                       | oť                    | UC SI             |                                       | 61                | 0,70                  | 1.83                                 | 233,66          | 96               | 85                | 252                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 253                                   | 67         |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ٤                       | 25                    | 26:51             |                                       | 60                | 0.66                  | 1-71                                 | 337.53          | 6                | 28                | 2%<br>2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 254                                   | 0          |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Åf                      | 30                    | 15:30             | ١                                     | )                 | ١                     | )                                    | 241,336         | ١                | 1                 | ۱                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ١                                     | 1          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                       | 30                    | 15°34             | 5.0                                   | 63                | 1.15                  | 800                                  | 241.336         | 89               | 88                | 360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 255                                   | 62         |
| 3     40     [5:4]     5.0     60     0.19     3.55     3.55     3.55     3.55     3.55     3.55     3.55     3.55     3.55     3.55     3.55     3.55     3.55     3.55     3.55     3.55     3.55     3.55     3.55     3.55     3.55     3.55     3.55     3.55     3.55     3.55     3.55     3.55     3.55     3.55     3.55     3.55     3.55     3.55     3.55     3.55     3.55     3.55     3.55     3.55     3.55     3.55     3.55     3.55     3.55     3.55     3.55     3.55     3.55     3.55     3.55     3.55     3.55     3.55     3.55     3.55     3.55     3.55     3.55     3.55     3.55     3.55     3.55     3.55     3.55     3.55     3.55     3.55     3.55     3.55     3.55     3.55     3.55     3.55     3.55     3.55     3.55     3.55     3.55     3.55     3.55     3.55     3.55     3.55     3.55     3.55     3.55     3.55     3.55     3.55     3.55     3.55     3.55     3.55     3.55     3.55     3.55     3.55     3.55     3.55     3.55     3.55     3.55     3.55     3.55     3.55     3.55     3.                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                       | 35                    | 15:39             | 5,0                                   | 60                | 1,00                  | 2.63                                 | 1               | 96               | 8                 | 254                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 252                                   | 77         |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3                       | 40                    | 15:44             | s,0                                   | 60                | 0,95                  | 2,50                                 | $\mathcal{O}$   | 85               | 68                | hSC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 252                                   | 20         |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4                       | Sh                    | 64:SI             | 4.0                                   | 60                | 0.8%                  | 2.33                                 | 355,21          | 99               | 88                | 356                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 353                                   | 66         |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5                       | 50                    | hg-51             | 4.5                                   | B                 | 0.93                  | 2.46                                 | H5"65C          | 49               | 88                | 256                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 254                                   | 5          |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6                       | 55                    | 15:59             | 4.5                                   | 60                | 0,91                  | 2.4                                  | 364.01          | 001              | 89                | HSC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 253                                   | 66         |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | off                     | 09                    | 16:04             | ١                                     | )                 |                       | •                                    | 368.459         | 1                | 1                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                     |            |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                       | 60                    | 16:07             | 5.0                                   | 62                | 01.1                  | 2.88                                 | 268.459         | 60               | 89                | کگ<br>ک                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6hC                                   | <u>f</u> f |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | e                       | ٤۶                    | 16:12             | 1,5                                   | 60                | 0.95                  | 3. <b>5</b>                          | 73.             | 8                | 89                | 348                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ohe                                   | 66         |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Μ                       | 2                     | 16:17             | 4.0                                   | 60                | 0.82                  | 2.17                                 | 77.             | 001              | 06                | 356                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SS                                    | 67         |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3                       | 2                     | 16-33             | 4.0                                   | 60                | 0,80                  | 2.12                                 | 281.90          | 100              | 01                | 253                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 247                                   | 66         |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5                       | 80                    | 16:37             | f)                                    | 60                | 0.50                  | 1.32                                 | 286.01          | 101              | ž                 | 3SG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1SC                                   | Ś          |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9                       | \$\$                  | 16:33             | M                                     | 59                | 0.49                  | 1,30                                 | 389.40          | 100              | <i>0b</i>         | 2<br>S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 251                                   | 64         |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ų.                      | 01                    | 16:37             | )                                     | •                 | 1                     |                                      | 292.771         | 1                | 1                 | ١                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                     | 1          |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                       | <del>ç</del>          | 16:41             | л<br>Х                                | 60                | 0.96                  | Ń                                    | 292.771         | 93               | 0,                | 25/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 259                                   | 64         |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | لم                      | 95                    | 16:46             | 1.0                                   | 59                | 6,85                  | 3                                    | 297.27          | 86               | 90                | 252                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 251                                   | 63         |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | m:                      | 100                   | 16:51             | 4.0                                   | 54                | 0.14                  | 1.96                                 | 301.57          | 100              | 90                | ass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 253                                   | Co<br>Co   |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5                       | Søj                   | 16:56             | 3.5                                   | 2                 | 0.67                  | 1.78                                 | 305.62          | 00/              | 06                | SSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 252                                   | 62         |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ν.                      | 110                   | 0.4               | 3.0                                   | 8                 | 0.61                  | 1,62                                 | 309.50          | 100              | 6                 | hSC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 255                                   | 63         |
| off     1.20     1.7:11     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~     ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | و                       | 115                   | 90:2              | 0,6                                   | 58                | 0,60                  | 1.59                                 | 313.23          | 66               | 91                | pse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 254                                   | 63         |
| ·Mf*(Tm/Ts)*(AP) Note: All temperatures are <sup>c</sup> R ( <sup>°</sup> F+460) Yc= (10/vm)*((0.03<br>846.72 * (Drv4) * (AH@) * (Cp^2) * (I1-(Bws/100))^2) * (MdMs) * (PsPm)<br>846.72 * (Drv4) * () * () * () * () * () * () * () MdMs) * (Pm =Mdd =                                                                                                                                                                                                                                                                                                  | 5                       | 01                    | 11:21             | ٢                                     | ١                 | ,                     | 1                                    | 316.939         | ,                | ۱                 | l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                     | ١          |
| 846.72* (Drr'4)* (AH@)* (Cp'2)* (I-(Bws/100))'2)* (Md/Ms)* (Ps/Fm)<br>846.72*()*()*()*()*()*()<br>Ps =<br>Md =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | = Mf * (Tm/T            | (dV) <b>*</b> (s      |                   |                                       | Note: All tempera | ttures are °R (°F+4   | 60)                                  | •               | Yc=              | (10/Vm)*((0.03    | t19*(Tm))/Pb)^0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | v                                     |            |
| ۲۹۴.۲2*()*()*()*()*()*()*اللل ۲۹۹ العام المعالم ۲۹۹ العام المعالم ۲۹۹ العام ۱۹۹۵ العام ۲۹۹ العام ۲۹                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | = 846.72 *              | (D <del>u</del> ∿4) * | * (@HV)           | (Cp^2) *                              | ((1-(Bws/100)     |                       |                                      |                 |                  |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |            |
| Ps =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | = 846.72 * (            |                       | Ĵ                 |                                       |                   |                       |                                      |                 | Pm =             |                   | Pbar + (ΔH@/13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (9)                                   |            |
| = pW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                         |                       |                   |                                       |                   |                       |                                      |                 | Ps =             |                   | Pbar + (Pstat/13.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6                                     |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |                       |                   |                                       |                   |                       |                                      |                 | . = PW           |                   | 0 44/%CO_)+0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12/%0.)+0.28/%                        | :N.+%CO)   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         | 1                     |                   |                                       |                   |                       |                                      |                 |                  |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |            |

DERENZO AND ASSOCIATES, INC.

(Md)(I-(Bws/100))+18(Bws/100) (Vwc+Vwsg)/(Vwc+Vwsg+Vm) 0.04706(Vf-Vi)

Bws = \_\_\_\_\_ Vwc = \_\_\_\_ Ms = \_\_\_\_\_

0.04715(Wf-Wi)

Vwsg =

ΔH@ / Kiso\*(Cp)'2\*(1-(Bwz/100))'2\*(MdMs)\*(PzPm)\*(TmTs)\* ΔP<sub>(numgs)</sub> = <sup>4</sup> - Mn\_m Da \*1.05= (Recommend multiplying calculate nozzle size by 5%) Nozzle Determination:

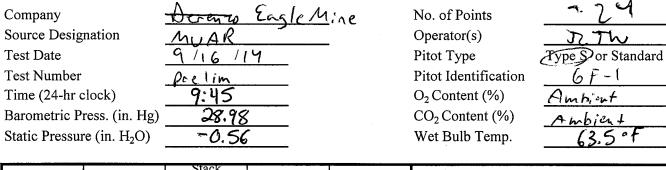
Isokinetic Field Sampling Data Sheet

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -1                  | . 1.              |                                                                                     |                         |                                                                 |                           |                 |                  |                       |                                        |                                                           |               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------------|-------------------------------------------------------------------------------------|-------------------------|-----------------------------------------------------------------|---------------------------|-----------------|------------------|-----------------------|----------------------------------------|-----------------------------------------------------------|---------------|
| Company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | alle                | WAD               |                                                                                     | -                       |                                                                 |                           |                 |                  |                       |                                        |                                                           |               |
| Jource Designau                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                   | Pitot Number                                                                        | Probe                   | 6                                                               | Leak Rate Initial         | 0.000000        |                  |                       | Final Wt                               | Initial Wt                                                | Net Gain      |
| Test Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | hat                 |                   | Meter Number                                                                        | <u>1-1</u>              |                                                                 | -<br>Leak Rate Final      | 1, 0.000 T      | 1=1              | Impinger              | (ml / g)                               |                                                           | (ml / g)      |
| Operator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 17 C C C C          | -                 | Kiso<br>Date tra                                                                    | 1639,548                | \$<br>\$                                                        | Traverse points           | 14              | 1                | 1st                   | 7367                                   | 5002                                                      | جم<br>س       |
| Bar. Press (Pb)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 38,80               |                   | Assumed H20                                                                         | 2.3                     | 34%                                                             | Meter Yd Factor           | 1.01 38         | 1                | 3rd                   | 595.9                                  | 594,1                                                     | 2             |
| Static Press (Ps)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                   | 8                 | Cond.Vol. (Vlc-1)                                                                   |                         | ېږ                                                              | Molecular Weight (%)      | ن<br>م م م      |                  |                       | 2020                                   | 2010                                                      |               |
| Stack Dia (m.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4                   | ٩                 | Nozzle Dia (in.)                                                                    | 0.219                   |                                                                 | ප පි                      | 0.0             | 1                | Silica Gel            | C.C.So                                 | IC.Cas                                                    | ろうち           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Samplii             | Sampling Time     | Train                                                                               | Stack                   | Velocity                                                        | Orifice                   | Sample          | DGM              | DGM Temp.             | Probe                                  | Filter Box                                                | Last Imp.     |
| Traverse Point<br>Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (Min)<br>ø          | Time<br>(24 hour) | Vacuum<br>("Hg)                                                                     | Temp<br>Ts (°F)         | Pressure<br>("H2O) AP                                           | Differential<br>("H2O) AH | Vol (ft3)<br>Vm | Inlet<br>(°F) Tm | Outlet<br>(°F) Tm     | Temp<br>(°F)                           | Temp<br>(°F)                                              | Temp.<br>(°F) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                   | 17.59             | 5,0                                                                                 | 28                      | 0.83                                                            | 2.30                      | 317.123         | ×                | 85                    | JSG                                    | 2SH                                                       | 62            |
| م                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | S                   | h0:81             | 4.S                                                                                 | 38                      | 0.77                                                            |                           | 321.42          | S                | Š                     | 253                                    | JSC<br>NSC                                                | 27            |
| m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9                   | 18:09             | 4.5                                                                                 | 58                      | 0.80                                                            | 9                         | 335.50          | 91               | 85                    | JSH<br>HSC                             | HSE                                                       | 5             |
| ¥                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15                  | 19:51             | 4.5                                                                                 | 58                      | 0.75                                                            | 1,97                      | 329.58          | hb               | 8                     | 356                                    | 253                                                       | 3             |
| v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 97°                 | 18:19             | 4.0                                                                                 | 28                      | 0,71                                                            | 1.87                      | 333.63          | 95               | 82                    | 255                                    | 253                                                       | 65            |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | کر                  | he:81             |                                                                                     | 25                      | 0.74                                                            | 1.95                      | 337,58          | 36               | 88                    | SSE                                    | 558                                                       | 67            |
| off                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 36                  | 18:29             |                                                                                     | ١                       | ]                                                               |                           | 341,623         | •                |                       | 1                                      | )                                                         | 1             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8                   | 18:30             | Ń                                                                                   | 58                      | 1.05                                                            | 2.75                      |                 | 88               | 8                     | 258                                    | hSte                                                      | 62            |
| d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ж                   | 18:37             | S                                                                                   | 58                      | 0.92                                                            | 2.43                      | 346.27          | 95               | 98                    | asy                                    | 253                                                       | 66            |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ЧО                  | R.UP              | 3                                                                                   | 58                      | 0.86                                                            | 2.27                      | 350,75          | 96               | 86                    | hse                                    | S<br>S                                                    | 67            |
| ⇒                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ¥                   | 18:47             | 4                                                                                   | 58                      | 0.69                                                            | 1.82                      | 30.255          | 96               | 86                    | ASA                                    | 4SE                                                       | 65            |
| δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 50                  | 18:53             | 4                                                                                   | 59                      | 0.75                                                            | 1.98                      | 358.99          | 96               | 98                    | <b>JS4</b>                             | 252                                                       | 61            |
| و                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | જ                   | 18:57             |                                                                                     | 53                      | 0.67                                                            | 1.77                      | 363,03          | 96               | 877                   | SSE                                    | 253                                                       | 5             |
| off                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 99                  | R:02              | •                                                                                   | ١                       | 1                                                               | ١                         | 366.901         | 1                | ١                     | •                                      | ١                                                         | 1             |
| ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 60                  | 19:06             |                                                                                     | 57                      | 081                                                             |                           | 366,901         | 89               | 8                     | 256                                    | 25 <b>6</b>                                               | 57            |
| ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 65                  | 19-11             | א<br><b>א</b>                                                                       | 51                      | 1.10                                                            | 2.91                      | 371.89          | 95               | 87                    | 253                                    | 252                                                       | 57            |
| ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | R                   | 91:61             | 6.0                                                                                 | 5                       | 1.15                                                            | 3.04                      | 376.70          | 6                | 86                    | asy                                    | 252                                                       | SS            |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ĸ                   | 16:91             | 20                                                                                  | 57                      | 1,05                                                            | 2.78                      | 381.60          | 97               | 8                     | 450                                    | 253                                                       | Ś             |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 80                  | 19:36             | 5<br>1<br>1<br>1                                                                    | 27                      | 1.00                                                            | 2,65                      | 386.30          | 6                | <b>\$</b> 9           | asy                                    | 253                                                       | 201           |
| هر                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8                   | 14:31             | 5.0                                                                                 | 5/                      | 0.44                                                            | 3.60                      | 390.87          | 47               | 88                    | asy                                    | 223                                                       | 56            |
| 4-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                  | 14.36             |                                                                                     |                         |                                                                 | 100                       | 575.508         |                  |                       | 1                                      | 1                                                         | 1             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                  | 0/:11             |                                                                                     | 1                       | 0.10                                                            |                           |                 | 225              |                       | 7                                      | 477                                                       | 1/1           |
| x n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | < 1 >               | 24:41             |                                                                                     |                         | 202                                                             | م. م<br>م                 | 544.45          | 15               |                       | in conc                                | ror<br>Cur                                                | 500           |
| ~ 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100                 | 72.01             | v<br>Š<br>T                                                                         | 24                      | 201                                                             | 202                       | 404,40          | 579              | с<br>У<br>У<br>У<br>У | へつく                                    | 2000                                                      | 22            |
| - ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10                  | 00:02             |                                                                                     |                         | 270                                                             | 11-1                      | 22.611          |                  |                       | 8<br>2<br>2<br>7<br>7<br>7<br>7        |                                                           | ) 7<br>7      |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 115                 | 20-05             |                                                                                     | ŀ                       | 0.65                                                            | 121                       | E               | 46               |                       | 254                                    | 253                                                       | 27            |
| Ť.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1961                | 01:08             |                                                                                     | 21                      | 31                                                              |                           | 420.164         |                  |                       | -                                      | 3                                                         | 5 \           |
| ΔH = Mf * (Tm/Ts) * (ΔP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | s) * (ΔP)           |                   |                                                                                     | Note: All tempera       | Note: All temperatures are <sup>°</sup> R ( <sup>°</sup> F+460) | 50)                       |                 | Yc=              | (10/Vm)*((0.03        | Yc= (10/Vm)*((0.0319*(Tm))/Pb)^0.5     | ~                                                         |               |
| Mf= 846.72 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (Dn^4) *            | * (ØHØ)           | (Cp^2) *                                                                            | ((1-(Bws/100))^2) *     | (37,000 (MdMs)) * (2~(                                          | * (Ps/Pm)                 |                 |                  |                       |                                        |                                                           |               |
| Mf = 846.72 * (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | )*(                 |                   | *                                                                                   |                         |                                                                 | )*(                       |                 | -                |                       | Dhor 1 ( A UI@/13                      | 161                                                       |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                   |                                                                                     |                         |                                                                 |                           |                 |                  |                       | FOAT + (ALIUM 13.0)                    | (0.0                                                      |               |
| Mf =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     |                   |                                                                                     |                         |                                                                 |                           |                 | Ps =<br>Md =     |                       | Pbar + (Pstat/13.6)<br>0 44/%CO_)+0 32 | Pbar + (Pstat/13.6)<br>0.440%CO.)+0.320%O.)+0.280%N.+%CO) | (U)%+"N       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ł                   |                   |                                                                                     |                         |                                                                 |                           |                 | Ms =             |                       | (Md)(1-(Bws/10                         | (Md)(1-(Bws/100))+18(Bws/100)                             | 1             |
| Nozzle Determination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | tion:               |                   |                                                                                     | ×                       |                                                                 |                           |                 | Bws =            |                       | (Vwc+Vwsg)/(V                          | (Vwc+Vwsg)/(Vwc+Vwsg+Vm)                                  |               |
| H@ / Kiso*(Cp)′                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ^2*(1-(Bws/100      | *(sMdMs)*2^((     | ΔH@ / Kiso*(Cp)^2*(1-(Bws/100))^2*(MdMs)*(Ps/Pm)*(Tm/Ts)* ΔP <sub>(average)</sub> = | $\Delta P_{(avenge)} =$ |                                                                 |                           |                 | Vwc =            |                       | 0.04706(Vf-Vi)                         | -                                                         |               |
| () see the first of the first o | and malace and deal |                   | 1                                                                                   |                         |                                                                 |                           |                 |                  |                       |                                        |                                                           |               |

2

•

\_\_\_0.04715(Wf-Wi) 0.04706(Vf-Vi)


Vwsg =

DERENZO AND ASSOCIATES, INC.

(Recommend multiplying calculate nozzle size by 5%)

Dn \*1.05=

# **USEPA Method 2** Gas Velocity Measurement Data Sheet



|                                       |                       | Stack                      |                                       |                  |            | · · · ·       |                    |                                                                                                                 |              | 1                |
|---------------------------------------|-----------------------|----------------------------|---------------------------------------|------------------|------------|---------------|--------------------|-----------------------------------------------------------------------------------------------------------------|--------------|------------------|
| Inches from                           | Traverse              | Temperature                | Velocity Head                         | Null Angel       | Sta        | ck / Duct     | Мезси              | reme                                                                                                            | nte          |                  |
| Stack Wall                            | Point Number          | (°F)                       | (in. H <sub>2</sub> O)                | (zero angle)     | Sta        | ck / Duce     | Muasu              | I CIIICI                                                                                                        | uts          |                  |
| 2.65                                  | t                     | 62                         | 0.99                                  | 3                |            |               | <b>~</b>           |                                                                                                                 |              |                  |
| 8.44                                  | ι.                    | 61                         | 0,98.<br>0,9/                         | 0                |            |               | <b>T</b>           |                                                                                                                 | 11           |                  |
| 14.87                                 | 3                     | 60                         | 0,9/                                  | 0                |            |               | A =                | 263                                                                                                             |              |                  |
| 22.30                                 | 4                     | 60                         | 0.80                                  | 0                | 1          | _ L \         | v                  |                                                                                                                 |              |                  |
| 3150                                  | 5                     | 59                         | 0.70                                  | 0                | ]   (      |               | Sam                | ple Port                                                                                                        | ts           |                  |
| 44.86                                 | 6                     | 59                         | 0,60                                  | 10               |            | -             |                    |                                                                                                                 |              |                  |
| 81.14                                 | $\gamma$ i            | 58                         | 0.88                                  | 5                | 1          |               |                    |                                                                                                                 |              |                  |
| 94.50                                 |                       | 58                         | 0,88                                  | 2                |            |               | 1                  |                                                                                                                 |              |                  |
| 103.70                                | 4 3                   | 58<br>57                   | 0,88<br>0,85<br>0,85                  | 0                | 6.         |               |                    |                                                                                                                 |              |                  |
| 11.13                                 | 10 4                  | 58                         | 0.8                                   | 0                |            | Airflow       |                    |                                                                                                                 |              | -                |
| 117.56                                | 11 5                  | 57                         | 0.74                                  | 5                |            | ⇒             | B =                | ~6                                                                                                              | 50           |                  |
| 123.55                                | 17.6                  | 57                         | 0,65                                  | 5                |            | ₹             | 1                  |                                                                                                                 |              |                  |
|                                       | 1                     | 57                         | 1.20                                  | 0                | ]   L      |               |                    |                                                                                                                 |              | 1                |
|                                       | 2                     | 56                         | 1.20                                  | 5                |            |               |                    |                                                                                                                 |              | ł                |
|                                       | 3                     | 56<br>56                   | 1,00                                  | 3                |            |               |                    |                                                                                                                 |              |                  |
|                                       | 4                     | 56                         | 0.99                                  | 5<br>3<br>3<br>3 |            | $\smile$      |                    |                                                                                                                 |              |                  |
|                                       | 5                     | 57                         | 0.91                                  | 3                |            |               |                    |                                                                                                                 |              | 458.4            |
|                                       | 6                     |                            | 0,80                                  | 3                | Round D    | uct Dia. (D)  | 12                 | -6 ''                                                                                                           |              | 1 279            |
|                                       | 1                     | 57<br>56                   | 0,95                                  | ~                | 1          |               |                    |                                                                                                                 |              | t53/4"<br>nipple |
|                                       | 2                     | 56                         | 0,99                                  | 0<br>3           | Square D   | uct (LxW)     |                    | x                                                                                                               |              |                  |
|                                       | 3                     | 56<br>56<br>56<br>56<br>56 | 0,90<br>0.82                          | 3                |            |               |                    |                                                                                                                 |              |                  |
|                                       | 4                     | 56                         | 0.82                                  | 5                | Square D   | uct Dia. (De  | ):                 |                                                                                                                 |              |                  |
|                                       | 5                     | 56                         | 0.76                                  | 5                | De = 2LV   | V/(L+W)       |                    |                                                                                                                 |              |                  |
|                                       | 6                     | 56                         | 0.70                                  | 0                | 1          | . ,           |                    |                                                                                                                 | ~            |                  |
|                                       | 0                     |                            |                                       |                  | Straight L | length:       | A/D                | SØ                                                                                                              | 05           | 1                |
|                                       |                       |                            |                                       |                  | (diameter  | length:<br>s) |                    |                                                                                                                 | ~            | 1                |
|                                       |                       |                            |                                       |                  |            |               | B/D                | -                                                                                                               | 5            |                  |
|                                       |                       |                            |                                       |                  | 1          |               |                    |                                                                                                                 |              |                  |
| · · · · · · · · · · · · · · · · · · · | <u>.</u>              | • <b>A</b>                 | · · · · · · · · · · · · · · · · · · · |                  | Traverse   | No. of Tra    | verse Poi          | nts Per                                                                                                         | Dia.         |                  |
| 0.5                                   | 1                     | 1.5                        | 2                                     | 2.5              | Point      | 6             | 8                  | 10                                                                                                              | 12           |                  |
|                                       |                       |                            |                                       | •                | 1          | 4.4           | 3.2                | 2.6                                                                                                             | 2.1          |                  |
|                                       | <b>A</b>              |                            |                                       |                  | 2          | 14.6          |                    | 8.2                                                                                                             | 6.7          |                  |
|                                       | 24 or 25 <sup>a</sup> | 1                          |                                       |                  | 3          | 29.6          |                    | 14.6                                                                                                            | 11.8         |                  |
|                                       |                       | 20                         |                                       |                  | 1 1        | 70.4          | 32.2               | 22.6                                                                                                            | 17.7         |                  |
| Non-par                               | tioulota              | 16                         | 12                                    |                  | 5          | 85.4<br>95.6  | 67.7<br>80.6       | 34.2<br>65.8                                                                                                    | 25.0         |                  |
| Inoli-pai                             | liculate              | !                          | 12                                    |                  | 7          | 93.0          | 80.6               | 05.8<br>77.4                                                                                                    | 35.6<br>64.4 |                  |
|                                       |                       |                            | L                                     | 9 <sup>a,b</sup> | 8          |               | 96.8               | 85.4                                                                                                            | 75.0         |                  |
|                                       |                       |                            |                                       |                  | 9          |               |                    | 91.8                                                                                                            | 82.3         |                  |
| 2                                     | 3 4                   | 5 6                        | 7 8                                   | 9 10             | 10         | 15.28 <u></u> |                    | 97.4                                                                                                            | 88.2         | ſ                |
|                                       |                       | В                          |                                       |                  | 11         |               | 100 million (1990) |                                                                                                                 | 93.3         |                  |
|                                       | her No. for recta     |                            |                                       |                  | 12         | 17192         |                    | 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - | 97.9         |                  |
| b- For                                | stacks between        | 12 and 24 in.              |                                       |                  | <u> </u>   |               |                    |                                                                                                                 |              |                  |
|                                       |                       | 9                          |                                       |                  |            |               |                    |                                                                                                                 | ŝ.           |                  |

| Test Date<br>Test Nun<br>Operator<br>Filter Nu<br>Barometr<br>Stack Sta<br>Stack Dir<br>Pitot Tub<br>Meter Nu | esignation<br>e<br>hber<br>mber<br>ric Pressure<br>ttic Pressure<br>nensions (in<br>pe Number<br>imber<br>p. Factor (K | e (Ps)<br>.)               | Eagle Mine<br>MVAR<br>9/16/2014<br>T1<br>TW/JL<br>022614 22<br>28.84<br>-0.56<br>126<br>Probe 6F<br>N-1<br>1639.548<br>1.898 |                           |                                                  | Assumed Moisture<br>Total Moisture Ga<br>Nozzle Diameter (i<br>Leak Rate Initial<br>Leak Rate Final<br>Traverse points<br>Pitot Corr. Factor<br>Method 3A Result<br>(Fyrite)<br>(Fyrite) | an (Vlć)<br>in.)<br>r (Cp)<br>or (Y) |                                            | 2.34<br>28.2<br>0.219<br>0.000 @ 12"<br>0.000 @ 7"<br>24<br>0.84<br>1.0138<br>0.00<br>20.90 |                                                |                                                   |
|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|----------------------------|------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------|---------------------------------------------------|
| Traverse<br>Point                                                                                             | (Minutes)                                                                                                              | ampling Time<br>Clock Time | Sampling<br>Train Vac.                                                                                                       | Stack Temp.<br>(°F)<br>Ts | Velocity Pres.<br>("H <sub>2</sub> O)<br>Delta P | Orifice<br>Differential                                                                                                                                                                  | Sample Volume<br>(cubic feet)        | Dry Gas M<br>Inlet<br>( <sup>0</sup> F) Tm | Aeter Temp.<br>Outlet<br>( <sup>°</sup> F) Tm                                               | Filter Box<br>Temperature<br>( <sup>o</sup> F) | Last Impinger<br>Temperature<br>( <sup>o</sup> F) |
| Number                                                                                                        | ø                                                                                                                      | (24 hour)                  | ("Hg)                                                                                                                        | Is                        | Delta P                                          | ("H <sub>2</sub> O) Delta H                                                                                                                                                              | Vm                                   | ( ) 111                                    | (F) III                                                                                     | ( Г)                                           | ( F)                                              |
| 1                                                                                                             | 0                                                                                                                      | 11:55:00                   | 5.0                                                                                                                          | 59                        | 0.92                                             | 2.30                                                                                                                                                                                     | 118.888                              | 63                                         | 62                                                                                          | 241                                            | 67                                                |
| 2                                                                                                             | 5                                                                                                                      | 12:00:00                   | 5.0                                                                                                                          | 59                        | 0.90                                             | 2.26                                                                                                                                                                                     | 123.07                               | 69                                         | 63                                                                                          | 253                                            | 67                                                |
| 3                                                                                                             | 10                                                                                                                     | 12:05:00                   | 4.5                                                                                                                          | 59                        | 0.79                                             | 2.00                                                                                                                                                                                     | 127.25                               | 74                                         | 64                                                                                          | 258                                            | 64                                                |
| 4                                                                                                             | 15                                                                                                                     | 12:10:00                   | 4.0                                                                                                                          | 59                        | 0.69                                             | 1.75                                                                                                                                                                                     | 131.17                               | 77                                         | 65                                                                                          | 260                                            | 65                                                |
| 5                                                                                                             | 20                                                                                                                     | 12:15:00                   | 4.0                                                                                                                          | 59                        | 0.59                                             | 1.50                                                                                                                                                                                     | 134.98                               | 79                                         | 66                                                                                          | 261                                            | 66                                                |
| 6                                                                                                             | 25                                                                                                                     | 12:20:00                   | 3.0                                                                                                                          | 58                        | 0.42                                             | 1.07                                                                                                                                                                                     | 138.51                               | 80                                         | 67                                                                                          | 258                                            | 67                                                |
| off                                                                                                           | 30                                                                                                                     | 12:25:00                   | -                                                                                                                            | -                         | -                                                | -                                                                                                                                                                                        | 141.413                              | -                                          | -                                                                                           | -                                              | -                                                 |
| 1                                                                                                             | 30                                                                                                                     | 12:32:00                   | 5.0                                                                                                                          | 59                        | 0.96                                             | 2.44                                                                                                                                                                                     | 141.413                              | 73                                         | 70                                                                                          | 249                                            | 66                                                |
| 2                                                                                                             | 35                                                                                                                     | 12:37:00                   | 5.0                                                                                                                          | 59                        | 0.95                                             | 2.44                                                                                                                                                                                     | 145.77                               | 82                                         | 71                                                                                          | 248                                            | 65                                                |
| 3                                                                                                             | 40                                                                                                                     | 12:42:00                   | 4.5                                                                                                                          | 59                        | 0.80                                             | 2.06                                                                                                                                                                                     | 150.14                               | 85                                         | 72                                                                                          | 249                                            | 65                                                |
| 4                                                                                                             | 45                                                                                                                     | 12:47:00                   | 3.5                                                                                                                          | 59                        | 0.50                                             | 1.29                                                                                                                                                                                     | 154.18                               | 87                                         | 73                                                                                          | 256                                            | 65                                                |
| 5                                                                                                             | 50                                                                                                                     | 12:52:00                   | 3.5                                                                                                                          | 59                        | 0.49                                             | 1.27                                                                                                                                                                                     | 157.51                               | 87                                         | 74                                                                                          | 252                                            | 66                                                |
| 6                                                                                                             | 55                                                                                                                     | 12:57:00                   | 3.5                                                                                                                          | 59                        | 0.51                                             | 1.32                                                                                                                                                                                     | 160.82                               | 87                                         | 75                                                                                          | 253                                            | 66                                                |
| off                                                                                                           | 60                                                                                                                     | 13:02:00                   | -                                                                                                                            | -                         | -                                                | -                                                                                                                                                                                        | 164.161                              | -                                          | -                                                                                           | -                                              | -                                                 |
| 1                                                                                                             | 60                                                                                                                     | 13:07:00                   | 6.0                                                                                                                          | 61                        | 1.25                                             | 3.21                                                                                                                                                                                     | 164.161                              | 81                                         | 77                                                                                          | 257                                            | 67                                                |
| 2                                                                                                             | 65                                                                                                                     | 13:12:00                   | 6.0                                                                                                                          | 61                        | 1.20                                             | 3.11                                                                                                                                                                                     | 169.04                               | 89                                         | 78                                                                                          | 254                                            | 66                                                |
| 3                                                                                                             | 70                                                                                                                     | 13:17:00                   | 6.0                                                                                                                          | 61                        | 1.10                                             | 2.86                                                                                                                                                                                     | 173.91                               | 92                                         | 79                                                                                          | 254                                            | 63                                                |
| 4                                                                                                             | 75                                                                                                                     | 13:22:00                   | 5.5                                                                                                                          | 59                        | 1.05                                             | 2.74                                                                                                                                                                                     | 178.63                               | 93                                         | 80                                                                                          | 253                                            | 62                                                |
| 5                                                                                                             | 80                                                                                                                     | 13:27:00                   | 5.0                                                                                                                          | 60                        | 0.97                                             | 2.53                                                                                                                                                                                     | 183.25                               | 94                                         | 81                                                                                          | 253                                            | 62                                                |
| 6                                                                                                             | 85                                                                                                                     | 13:32:00                   | 5.0                                                                                                                          | 60                        | 0.91                                             | 2.38                                                                                                                                                                                     | 187.72                               | 95                                         | 82                                                                                          | 252                                            | 62                                                |
| off                                                                                                           | 90                                                                                                                     | 13:37:00                   | -                                                                                                                            | -                         | -                                                | -                                                                                                                                                                                        | 192.069                              | -                                          | -                                                                                           | -                                              | -                                                 |
| 1                                                                                                             | 90                                                                                                                     | 13:40:00                   | 5.0                                                                                                                          | 61                        | 0.97                                             | 2.52                                                                                                                                                                                     | 192.069                              | 87                                         | 83                                                                                          | 256                                            | 61                                                |
| 2                                                                                                             | 95                                                                                                                     | 13:45:00                   | 5.0                                                                                                                          | 61                        | 0.92                                             | 2.40                                                                                                                                                                                     | 196.52                               | 94                                         | 83                                                                                          | 253                                            | 60                                                |
| 3                                                                                                             | 100                                                                                                                    | 13:50:00                   | 4.5                                                                                                                          | 61                        | 0.80                                             | 2.09                                                                                                                                                                                     | 200.91                               | 95                                         | 84                                                                                          | 253                                            | 55                                                |
| 4                                                                                                             | 105                                                                                                                    | 13:55:00                   | 4.5                                                                                                                          | 61                        | 0.75                                             | 1.97                                                                                                                                                                                     | 205.00                               | 96                                         | 85                                                                                          | 250                                            | 60                                                |
| 5                                                                                                             | 110                                                                                                                    | 14:00:00                   | 4.0                                                                                                                          | 61                        | 0.64                                             | 1.68                                                                                                                                                                                     | 209.01                               | 97                                         | 85                                                                                          | 253                                            | 60                                                |
| 6                                                                                                             | 115                                                                                                                    | 14:05:00                   | 4.0                                                                                                                          | 62                        | 0.63                                             | 1.65                                                                                                                                                                                     | 212.78                               | 97                                         | 86                                                                                          | 253                                            | 61                                                |
| off                                                                                                           | 120                                                                                                                    | 14:10:00                   | -                                                                                                                            | -                         | -                                                | -                                                                                                                                                                                        | 216.579                              | -                                          | -                                                                                           | -                                              | -                                                 |
| Average                                                                                                       | 120                                                                                                                    |                            |                                                                                                                              | 59.8                      | 0.8                                              | 2.1                                                                                                                                                                                      | 97.691                               | 85.5                                       | 75.2                                                                                        | 253.3                                          | 63.7                                              |

| Test Data<br>Test Nun<br>Operator<br>Filter Nu<br>Barometr<br>Stack Sta<br>Stack Din<br>Pitot Tuk<br>Meter Nu | esignation<br>e<br>hber<br>mber<br>ric Pressure<br>nensions (in<br>pe Number<br>imber<br>p. Factor (K | e (Ps)<br>.)         | Eagle Mine<br>MVAR<br>9/16/2014<br>2<br>TW/JL<br>022614 23<br>28.80<br>-0.56<br>126<br>Probe 6F<br>N-1<br>1639.548<br>1.898 |                   |                     | Assumed Moisture<br>Total Moisture Ga<br>Nozzle Diameter (i<br>Leak Rate Initial<br>Leak Rate Final<br>Traverse points<br>Pitot Corr. Factor<br>Meter Corr. Facto<br>Method 3A Result<br>(Fyrite)<br>(Fyrite) | un (Vlć)<br>in.)<br>(Cp)<br>sr (Y) |                      | 2.34<br>29.6<br>0.219<br>0.000 @ 10"<br>0.000 @ 7"<br>24<br>0.84<br>1.0138<br>0.00<br>20.90 |                   |                   |
|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|----------------------|---------------------------------------------------------------------------------------------|-------------------|-------------------|
| Traverse                                                                                                      | Sa                                                                                                    | mpling Time          | Sampling                                                                                                                    | Stack Temp.       | Velocity Pres.      | Orifice                                                                                                                                                                                                       | Sample Volume                      | Dry Gas !            | Meter Temp.                                                                                 | Filter Box        | Last Impinger     |
| Point                                                                                                         | (Minutes)                                                                                             | Clock Time           | Train Vac.                                                                                                                  | ( <sup>o</sup> F) | ("H <sub>2</sub> O) | Differential                                                                                                                                                                                                  | (cubic feet)                       | Inlet                | Outlet<br>( <sup>o</sup> F) Tm                                                              | Temperature       | Temperature       |
| Number                                                                                                        | ø                                                                                                     | (24 hour)            | ("Hg)                                                                                                                       | Ts                | Delta P             | ("H <sub>2</sub> O) Delta H                                                                                                                                                                                   | Vm                                 | ( <sup>o</sup> F) Tm | ( F) Im                                                                                     | ( <sup>0</sup> F) | ( <sup>0</sup> F) |
| 1                                                                                                             | 0                                                                                                     | 15:00:00             | 4.5                                                                                                                         | 60                | 0.95                | 2.47                                                                                                                                                                                                          | 216.754                            | 84                   | 84                                                                                          | 242               | 67                |
| 2                                                                                                             | 5                                                                                                     | 15:05:00             | 4.0                                                                                                                         | 60                | 0.95                | 2.47                                                                                                                                                                                                          | 221.14                             | 89                   | 84<br>85                                                                                    | 242               | 67                |
| 3                                                                                                             | 10                                                                                                    | 15:10:00             | 4.0                                                                                                                         | 60                | 0.85                | 2.32                                                                                                                                                                                                          | 225.43                             | 92                   | 84                                                                                          | 250               | 67                |
| 4                                                                                                             | 15                                                                                                    | 15:15:00             | 4.0                                                                                                                         | 60                | 0.75                | 1.97                                                                                                                                                                                                          | 229.70                             | 95                   | 85                                                                                          | 255               | 67                |
| 5                                                                                                             | 20                                                                                                    | 15:20:00             | 3.5                                                                                                                         | 61                | 0.70                | 1.83                                                                                                                                                                                                          | 233.68                             | 96                   | 85                                                                                          | 253               | 67                |
| 6                                                                                                             | 25                                                                                                    | 15:25:00             | 3.5                                                                                                                         | 60                | 0.66                | 1.71                                                                                                                                                                                                          | 237.53                             | 97                   | 86                                                                                          | 254               | 67                |
| off                                                                                                           | 30                                                                                                    | 15:30:00             | -                                                                                                                           | -                 | -                   | -                                                                                                                                                                                                             | 241.336                            | -                    | -                                                                                           | -                 | -                 |
| 1                                                                                                             | 30                                                                                                    | 15:34:00             | 5.0                                                                                                                         | 60                | 1.15                | 3.00                                                                                                                                                                                                          | 241.336                            | 89                   | 86                                                                                          | 255               | 67                |
| 2                                                                                                             | 35                                                                                                    | 15:39:00             | 5.0                                                                                                                         | 60                | 1.00                | 2.63                                                                                                                                                                                                          | 246.14                             | 96                   | 87                                                                                          | 253               | 66                |
| 3                                                                                                             | 40                                                                                                    | 15:44:00             | 5.0                                                                                                                         | 60                | 0.95                | 2.50                                                                                                                                                                                                          | 250.75                             | 98                   | 87                                                                                          | 253               | 66                |
| 4                                                                                                             | 45                                                                                                    | 15:49:00             | 4.0                                                                                                                         | 60                | 0.88                | 2.32                                                                                                                                                                                                          | 255.21                             | 99                   | 88                                                                                          | 253               | 66                |
| 5                                                                                                             | 50                                                                                                    | 15:54:00             | 4.5                                                                                                                         | 60                | 0.93                | 2.46                                                                                                                                                                                                          | 259.54                             | 99                   | 88                                                                                          | 254               | 65                |
| 6                                                                                                             | 55                                                                                                    | 15:59:00             | 4.5                                                                                                                         | 60                | 0.91                | 2.41                                                                                                                                                                                                          | 264.01                             | 100                  | 89                                                                                          | 253               | 66                |
| off                                                                                                           | 60                                                                                                    | 16:04:00             | -                                                                                                                           | -                 | -                   | -                                                                                                                                                                                                             | 268.459                            | -                    | -                                                                                           | -                 | -                 |
| 1                                                                                                             | 60                                                                                                    | 16:07:00             | 5.0                                                                                                                         | 62                | 1.10                | 2.88                                                                                                                                                                                                          | 268.459                            | 92                   | 89                                                                                          | 249               | 66                |
| 2                                                                                                             | 65                                                                                                    | 16:12:00             | 4.5                                                                                                                         | 60                | 0.95                | 2.51                                                                                                                                                                                                          | 273.22                             | 99                   | 89                                                                                          | 240               | 66                |
| 3                                                                                                             | 70                                                                                                    | 16:17:00             | 4.0                                                                                                                         | 60                | 0.82                | 2.17                                                                                                                                                                                                          | 277.72                             | 100                  | 90                                                                                          | 252               | 67                |
| 4<br>5                                                                                                        | 75<br>80                                                                                              | 16:22:00<br>16:27:00 | 4.0<br>3.0                                                                                                                  | 60<br>60          | 0.80<br>0.50        | 2.12<br>1.32                                                                                                                                                                                                  | 281.90<br>286.01                   | 100<br>101           | 90<br>90                                                                                    | 247<br>251        | 66<br>65          |
| 6                                                                                                             | 85                                                                                                    | 16:32:00             | 3.0                                                                                                                         | 59                | 0.30                | 1.32                                                                                                                                                                                                          | 289.40                             | 101                  | 90<br>90                                                                                    | 251               | 64                |
| off                                                                                                           | 85<br>90                                                                                              | 16:32:00             | -                                                                                                                           | -                 | -                   | -                                                                                                                                                                                                             | 292.771                            | -                    | -                                                                                           | -                 | -                 |
| 1                                                                                                             | 90                                                                                                    | 16:41:00             | 4.5                                                                                                                         | 60                | 0.96                | 2.53                                                                                                                                                                                                          | 292.771                            | 93                   | 90                                                                                          | 259               | 64                |
| 2                                                                                                             | 95                                                                                                    | 16:46:00             | 4.0                                                                                                                         | 59                | 0.85                | 2.25                                                                                                                                                                                                          | 297.27                             | 98                   | 90                                                                                          | 251               | 62                |
| 3                                                                                                             | 100                                                                                                   | 16:51:00             | 4.0                                                                                                                         | 59                | 0.74                | 1.96                                                                                                                                                                                                          | 301.57                             | 100                  | 90                                                                                          | 253               | 62                |
| 4                                                                                                             | 105                                                                                                   | 16:56:00             | 3.5                                                                                                                         | 58                | 0.67                | 1.78                                                                                                                                                                                                          | 305.62                             | 100                  | 90                                                                                          | 252               | 62                |
| 5                                                                                                             | 110                                                                                                   | 17:01:00             | 3.5                                                                                                                         | 59                | 0.61                | 1.62                                                                                                                                                                                                          | 309.50                             | 100                  | 91                                                                                          | 255               | 63                |
| 6                                                                                                             | 115                                                                                                   | 17:06:00             | 3.0                                                                                                                         | 58                | 0.60                | 1.59                                                                                                                                                                                                          | 313.23                             | 99                   | 91                                                                                          | 254               | 63                |
| off                                                                                                           | 120                                                                                                   | 17:11:00             | -                                                                                                                           | -                 | -                   | -                                                                                                                                                                                                             | 316.939                            | -                    | -                                                                                           | -                 | -                 |
| Average                                                                                                       | 120                                                                                                   |                      |                                                                                                                             | 59.8              | 0.8                 | 2.2                                                                                                                                                                                                           | 100.185                            | 96.5                 | 88.1                                                                                        | 251.8             | 65.3              |

| Company               |                          |               | Eagle Mine   |                   |                     |                                     |                          |                      |                      |                   |                   |
|-----------------------|--------------------------|---------------|--------------|-------------------|---------------------|-------------------------------------|--------------------------|----------------------|----------------------|-------------------|-------------------|
|                       | esignation               |               | MVAR         |                   |                     | A                                   |                          |                      |                      |                   |                   |
| Test Date<br>Test Nun |                          |               | 9/16/2014    |                   |                     | Assumed Moistur<br>Total Moisture G | ( )                      |                      | 2.34                 |                   |                   |
|                       |                          |               | 3            |                   |                     | Total Moisture G                    | an (vic)                 |                      | 31.8                 |                   |                   |
| Operator              |                          |               | TW/JL        |                   |                     | Nozzle Diameter (                   | :)                       |                      | 0.210                |                   |                   |
| Filter Nu             | ric Pressure             | ( <b>Db</b> ) | 022614 24    |                   |                     | Leak Rate Initial                   | III. <i>)</i>            |                      | 0.219                |                   |                   |
|                       | tic Pressure             | . ,           | 28.80        |                   |                     | Leak Rate Final                     |                          |                      | 0.000 @ 10"          |                   |                   |
|                       | nensions (in             | . ,           | -0.56<br>126 |                   |                     | Traverse points                     |                          |                      | 0.000 @ 7"<br>24     |                   |                   |
|                       | nensions (m<br>oe Number | .)            | Probe 6F     |                   |                     | Pitot Corr. Factor                  | $(\mathbf{C}\mathbf{n})$ |                      | 0.84                 |                   |                   |
| Meter Nu              |                          |               | N-1          |                   |                     | Meter Corr. Factor                  | · · ·                    |                      | 1.0138               |                   |                   |
|                       | o. Factor (K             | (iso)         | 1639.548     |                   |                     | Method 3A Result                    | · · ·                    |                      | 1.0158               |                   |                   |
| Delta Ha              |                          | (150)         | 1.898        |                   |                     | (Fyrite)                            | CO <sub>2</sub>          |                      | 0.00                 |                   |                   |
| Dena Ha               | 2                        |               | 1.070        |                   |                     | (Fyrite)                            | $O_2$                    |                      | 20.90                |                   |                   |
| Traverse              | S                        | ampling Time  | Sampling     | Stack Temp.       | Velocity Pres.      | Orifice                             | Sample Volume            | Dry Gas M            | Meter Temp.          | Filter Box        | Last Impinger     |
| Point                 | (Minutes)                | Clock Time    | Train Vac.   | ( <sup>0</sup> F) | ("H <sub>2</sub> O) | Differential                        | (cubic feet)             | Inlet                | Outlet               | Temperature       | Temperature       |
| Number                | ø                        | (24 hour)     | ("Hg)        | Ts                | Delta P             | ("H <sub>2</sub> O) Delta H         | Vm                       | ( <sup>o</sup> F) Tm | ( <sup>o</sup> F) Tm | ( <sup>0</sup> F) | ( <sup>0</sup> F) |
| 1                     | 0                        | 17:59:00      | 5.0          | 58                | 0.88                | 2.30                                | 317.123                  | 85                   | 85                   | 254               | 62                |
| 2                     | 5                        | 18:04:00      | 4.5          | 58                | 0.77                | 2.02                                | 321.43                   | 89                   | 85                   | 254               | 62                |
| 3                     | 10                       | 18:09:00      | 4.5          | 58                | 0.80                | 2.10                                | 325.50                   | 91                   | 85                   | 254               | 60                |
| 4                     | 15                       | 18:14:00      | 4.5          | 58                | 0.75                | 1.97                                | 329.58                   | 94                   | 85                   | 253               | 62                |
| 5                     | 20                       | 18:19:00      | 4.0          | 58                | 0.71                | 1.87                                | 333.63                   | 95                   | 85                   | 253               | 65                |
| 6                     | 25                       | 18:24:00      | 4.5          | 58                | 0.74                | 1.95                                | 337.58                   | 96                   | 86                   | 255               | 67                |
| off                   | 30                       | 18:29:00      | -            | -                 | -                   | -                                   | 341.623                  | -                    | -                    | -                 | -                 |
| 1                     | 30                       | 18:32:00      | 5.5          | 58                | 1.05                | 2.75                                | 341.623                  | 88                   | 85                   | 254               | 62                |
| 2                     | 35                       | 18:37:00      | 5.0          | 58                | 0.92                | 2.43                                | 346.27                   | 95                   | 86                   | 253               | 66                |
| 3                     | 40                       | 18:42:00      | 5.0          | 58                | 0.86                | 2.27                                | 350.75                   | 96                   | 86                   | 252               | 67                |
| 4                     | 45                       | 18:47:00      | 4.0          | 58                | 0.69                | 1.82                                | 355.06                   | 96                   | 86                   | 254               | 65                |
| 5                     | 50                       | 18:52:00      | 4.5          | 58                | 0.75                | 1.98                                | 358.99                   | 96                   | 86                   | 252               | 61                |
| 6                     | 55                       | 18:57:00      | 4.0          | 58                | 0.67                | 1.77                                | 363.03                   | 96                   | 87                   | 252               | 59                |
| off                   | 60                       | 19:02:00      | -            | -                 | -                   | -                                   | 366.901                  | -                    | -                    | -                 | -                 |
| 1                     | 60                       | 19:06:00      | 6.0          | 57                | 1.20                | 3.15                                | 366.901                  | 89                   | 86                   | 256               | 57                |
| 2                     | 65                       | 19:11:00      | 5.5          | 57                | 1.10                | 2.91                                | 371.89                   | 95                   | 87                   | 252               | 57                |
| 3                     | 70                       | 19:16:00      | 6.0          | 57                | 1.15                | 3.04                                | 376.70                   | 97                   | 86                   | 252               | 55                |
| 4                     | 75                       | 19:21:00      | 5.5          | 57                | 1.05                | 2.78                                | 381.60                   | 97                   | 87                   | 253               | 55                |
| 5                     | 80                       | 19:26:00      | 5.5          | 57                | 1.00                | 2.65                                | 386.30                   | 97                   | 86                   | 253               | 56                |
| 6                     | 85                       | 19:31:00      | 5.0          | 57                | 0.99                | 2.62                                | 390.89                   | 97                   | 86                   | 253               | 56                |
| off                   | 90                       | 19:36:00      | -            | -                 | -                   | -                                   | 395.508                  | -                    | -                    | -                 | -                 |
| 1                     | 90                       | 19:40:00      | 5.0          | 58                | 0.90                | 2.36                                | 395.508                  | 89                   | 86                   | 254               | 54                |
| 2                     | 95                       | 19:45:00      | 5.0          | 57                | 0.87                | 2.29                                | 399.93                   | 93                   | 86                   | 252               | 55                |
| 3                     | 100                      | 19:50:00      | 4.5          | 57                | 0.83                | 2.19                                | 404.25                   | 94                   | 85                   | 253               | 53                |
| 4                     | 105                      | 19:55:00      | 4.5          | 57                | 0.77                | 2.03                                | 408.48                   | 95                   | 85                   | 252               | 53                |
| 5                     | 110                      | 20:00:00      | 4.0          | 57                | 0.65                | 1.71                                | 412.53                   | 94                   | 85                   | 252               | 54                |
| 6                     | 115                      | 20:05:00      | 4.0          | 58                | 0.65                | 1.71                                | 416.35                   | 94                   | 85                   | 253               | 54                |
| off                   | 120                      | 20:10:00      | -            | -                 | -                   | -                                   | 420.164                  | -                    | -                    | -                 | -                 |
| Average               | 120                      |               |              | 57.6              | 0.9                 | 2.3                                 | 103.041                  | 93.7                 | 85.7                 | 253.1             | 59.0              |

| Company<br>Source Designation                                                                                                         |                    | Eagle Mine<br>MVAR |                    |                    |
|---------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------|--------------------|--------------------|
| Test Date<br>Test Start Time                                                                                                          | 9/16/2014<br>11:55 | 9/16/2014<br>15:00 | 9/16/2014<br>17:59 |                    |
| Meter/Nozzle Information                                                                                                              | MVAR-1             | MVAR-2             | MVAR-3             | Average            |
|                                                                                                                                       | 00.20              | 02.20              | 00.00              | 07.45              |
| Meter Temperature, Tm (°F)<br>Meter Pressure, Pm (in. Hg)                                                                             | 80.38<br>29.00     | 92.29<br>28.96     | 89.69<br>28.97     | 87.45<br>28.97     |
| Measured Sample Volume, Vm (ft <sup>3</sup> )                                                                                         | 29.00<br>97.691    | 100.185            | 103.041            | 100.31             |
| Meter Correction Factor, Y                                                                                                            | 1.0138             | 1.0138             | 1.0138             | 1.0138             |
| Sample Volume at STP, Vm (Std ft <sup>3</sup> ) = $(Vm^*Y^*17.64^*Pm)/(Tm+460)$                                                       | 93.74              | 93.94              | 97.11              | 94.93              |
| Sample Volume at STP, Vm (Std m <sup>3</sup> ) = (Vm(Std ft <sup>3</sup> ))*0.028317                                                  | 2.65               | 2.66               | 2.75               | 2.69               |
| Condensate Volume, Vw (std) = (0.04707 * Vwc) + (0.04715 * Vwsg)                                                                      | 1.33               | 1.39               | 1.50               | 1.41               |
| Gas Density, $\rho s$ (std lbs/ft <sup>3</sup> ) = (Md(1-Bws) + 18(Bws))/385                                                          | 0.0745             | 0.0745             | 0.0745             | 0.0745             |
| Total weight of sampled gas, Ws (lbs) = $(Vm + Vw) * \rho s$                                                                          | 7.083              | 7.101<br>0.0002616 | 7.343<br>0.0002616 | 7.176<br>0.0002616 |
| Nozzle Size, An (sq. ft.) = $\Pi(D/4)^2$ , where D = Nozzle dia.<br>sokinetic Variation, I                                            | 0.0002616<br>101.0 | 101.0              | 101.4              | 101.1              |
| =100*Ts(0.002669(Vwc + Wsg)+((Vm*Y)/Tm)*Pm)/(60*C*vs*Ps*An)                                                                           | 101.0              | 101.0              | 101.4              | 101.1              |
| Stack Data                                                                                                                            |                    |                    |                    |                    |
| Average Stack Temperature, Ts (°F)                                                                                                    | 59.8               | 59.8               | 57.6               | 59.1               |
| Molecular Weight Stack Gas-dry, Md (lb/lb mole)                                                                                       | 28.84              | 28.84              | 28.84              | 28.84              |
| Molecular Weight Stack Gas-wet, Ms (lb/lb mole)                                                                                       | 28.68              | 28.68              | 28.67              | 28.68              |
| Stack Gas Specific Gravity, Gs<br>Percent Moisture, Bws = Vw/(Vw+Vm)*100                                                              | 0.99<br>1.40       | 0.00<br>1.46       | 0.00 1.52          | 0.33               |
| Water Vapor Volume (fraction) = $Bws/100$                                                                                             | 0.014              | 0.015              | 0.015              | 0.015              |
| Stack Pressure, Ps("Hg)                                                                                                               | 28.80              | 28.76              | 28.76              | 28.77              |
| Average Stack Velocity, Vs (ft/s)                                                                                                     | 51.12              | 51.37              | 52.68              | 51.73              |
| Area of Stack, As (ft <sup>2</sup> )                                                                                                  | 86.59              | 86.59              | 86.59              | 86.59              |
| Exhaust Gas Flowrate                                                                                                                  |                    |                    |                    |                    |
| Actual flowrate, Qs (ACFM)= Vs*As*60                                                                                                  | 265,596            | 266,884            | 273,719            | 268,733            |
| Standard wet flowrate, Qw (WSCFM) = 528*Qs*Ps/(Ts*29.92)                                                                              | 259,660            | 260,577            | 268,392            | 262,876            |
| Dry standard flowrate, Qstd (DSCFM) = Qw *(1-Bws/100)                                                                                 | 256,035            | 256,769            | 264,317            | 259,040            |
| Dry standard flowrate, Qstd (DSCMM) = Qstd*0.028317                                                                                   | 7,250.1            | 7,270.9            | 7,484.7            | 7,335.2            |
| Standard Temperature and Pressure = 29.92 "Hg and 68°F                                                                                |                    |                    |                    |                    |
| Total Copper Weights                                                                                                                  |                    |                    |                    |                    |
| Filter and Rinses (µg)                                                                                                                | 9.39               | 9.03               | 4.00               | 7.47               |
| Total Copper Emission Rate                                                                                                            |                    |                    |                    |                    |
| Total Copper Emission Rate (lb/hr)<br>= ((total copper (μg)) / Vm) * Qstd * 60 min/hr * g/10.0E06 μg * lb/453.6 g                     | 3.26E-03           | 3.06E-03           | 1.36E-03           | 2.56E-03           |
| Total Copper Emission Rate (lb/24 hour day)<br>= ((total copper (µg)) / Vm) * Qstd * 60 min/hr * g/10.0E06 µg * lb/453.6 g * 24 hours | 7.81E-02           | 7.35E-02           | 3.26E-02           | 6.14E-02           |
| Total Nickel Weights                                                                                                                  |                    |                    |                    |                    |
| Filter and Rinses (µg)                                                                                                                | 4.30               | 8.95               | 5.07               | 6.11               |
| Total Nickel Emission Rate                                                                                                            |                    |                    |                    |                    |
| fotal Nickel Emission Rate (lb/hr)                                                                                                    | 1.49E-03           | 3.03E-03           | 1.72E-03           | 2.08E-03           |
| = ((total nickel (μg)) / Vm) * Qstd * 60 min/hr * g/10.0E06 μg * lb/453.6 g                                                           | 1.471-05           | 5.052-05           | 1.721-05           | 2.001-05           |
| fotal Nickel Emission Rate (lb/24 hour day)<br>= ((total nickel (μg)) / Vm) * Qstd * 60 min/hr * g/10.0E06 μg * lb/453.6 g * 24 hours | 3.57E-02           | 7.28E-02           | 4.13E-02           | 4.99E-02           |
| Total Filterable Particulate Weights                                                                                                  |                    |                    |                    |                    |
| Primary Filter - Cont. 1 (mg)                                                                                                         | 0.2                | 0.1                | 0.1                | 0.13               |
| Acetone rinse, Nozzle/Filter Holder - Cont. 2 (mg)                                                                                    | 5.0                | 3.6                | 3.6                | 4.1                |
| Total, (mg)                                                                                                                           | 5.2                | 3.7                | 3.7                | 4.2                |
| fotal (Ib)                                                                                                                            | 1.15E-05           | 8.16E-06           | 8.16E-06           | 9.26E-06           |
| Total Filterable Particulate Concentration                                                                                            |                    |                    |                    |                    |
| b PM/1000 lb gas (dry) = (Total (lb)/(Vm/ρs)*1000                                                                                     | 0.0016             | 0.0012             | 0.0011             | 0.0013             |
| Filterable Emission Rate (lb/hr) = filterable catch (lb) / Vm * Qstd * 60 min/hr                                                      | 1.803              | 1.254              | 1.255              | 1.44E+00           |
| include Emission Rate (10/11) interable cateri (10)? Vin Qsta oo manin                                                                |                    |                    |                    |                    |