

Summary of Transportation Route Surface Water and Air Quality Monitoring in the City of Marquette, Michigan

Environmental monitoring along the Eagle Mine ore transportation route includes collection of baseline water quality data at road stream crossing sites and air quality data (particulate matter) at established sites along the transportation route between Eagle Mine and the Humboldt Mill. The objective of the monitoring is to evaluate potential impacts to the environment from transportation of ore during mining operations. Data collected along the transportation route will be considered baseline through September 2014, when Eagle Mine began full operations and ore transport between the mine and the Humboldt Mill began. Data collected after September 2014 will be used to evaluate trends and potential impacts through the duration of mining operations. Standards and Methodologies for surface water and air quality monitoring along the transportation route are attached. This report provides a summary of initial baseline data collected within the City of Marquette.

Surface Water Quality Monitoring

The objective of surface water quality monitoring is to collect baseline data for evaluation of potential environmental impacts to surface waters from the transportation of ore during mining operations. During June and July 2014, baseline surface water quality monitoring was conducted at 28 sites including 5 sites in the Dead River Watershed in the City of Marquette (see Appendix A - Standards and Methodologies for Transportation Route Surface Water Quality Monitoring for a complete list of sites and monitoring parameters). Data gathered will be used to establish baseline surface water quality values and will be compared to the Michigan Surface Water Standards, Rule 57 reference values. Additional monitoring will be conducted once per year for at least three years after Eagle Mine commences maximum production levels. Results for sites located in the Dead River Watershed in Table 1 and Table 2 below.

Stream/Road Crossing Name	Unknown Tributary to Dead River @ Wright Street	Backyard Creek @ Wright Street	Badger Creek @ Wright Street	Raney Creek @ Wright Street	Dead River @ CR 550*
Water Quality Parameters					
Temperature (C)	11.54	12.34	13.63	13.04	17.96
pH (SU)	7.87	7.84	7.83	7.58	7.28
ORP	76.8	286	305	303.4	288.9
Dissolved Oxygen (%)	86.4	82.1	83.1	75.7	78.1
Conductivity ms/cm	442	436.3	407.9	417.8	80.09
Average Depth (ft)	0.25	0.47	0.96	0.35	2.25
Average Width (ft)	4.65	7.2	7.7	4.35	48.45
Streamflow (ft/sec)	0.7	0.6	1.7	0.3	NA
Substrate Composition	Cobble, Gravel, Sand	Gravel, Sand	Cobble, Gravel, Sand	Sand, Organic Material	Boulder, Cobble

Table 1. Surface Water Quality Results for Dead River Watershed - City of Marquette

*See also CEMP Independent Laboratory Results for the Dead River at CR 550 (Table 2)

CEMP Field Technician collecting a water sample to establish baseline surface water quality data for road stream crossing sites along the ore Transportation Route between Eagle Mine and the Humboldt Mill.

Table 2. Laboratory Surface Water Quality Results for the Dead River at County Road 550

ampling P	oint: HR-DR CEM-10	010176					PWS ID: N	ot Supplied	
			G	eneral Ch	emistry				
Analyte ID #	Analyte	Method	Reç Limi		L† Result	Units	Preparation Date	Analyzed Date	EEA ID #
	Alkalinity, Bicarbonate	2320 B		1.0	0 27.2	mg/L as CaCO3		07/01/14 20:03	305194
	Alkalinity, Carbonate	2320 B		1.0	< 1.0	mg/L as CaCO3		07/01/14 20:03	305194
	Solids, Dissolved	2540 C	500	^ 10	60	mg/L		06/27/14 13:34	305194
14808-79-8	Sulfate	300.0	250	^ 5.0	< 5.0	mg/L		07/02/14 23:23	305194
16984-48-8	Fluoride	4500-F- C	4 *	0.1	< 0.1	mg/L		07/03/14 12:45	30519
				Meta	ls				
Analyte ID #	Analyte	Method	Reg Limit	MRL†	Result	Units	Preparation Date	Analyzed Date	EEA
7440-70-2	Calcium	200.7		0.1	9.8	mg/L	07/02/14 11:30	07/03/14 15:53	305194
7439-89-6	Iron	200.7	0.3 ^	0.020	0.36	mg/L	07/02/14 11:30	07/03/14 15:53	305194
7439-95-4	Magnesium	200.7		0.1	1.8	mg/L	07/02/14 11:30	07/03/14 15:53	305194
7440-09-7	Potassium	200.7		0.2	0.5	mg/L	07/02/14 11:30	07/03/14 15:53	305194
7440-23-5	Sodium	200.7		0.1	3.4	mg/L	07/02/14 11:30	07/03/14 15:53	305194
7429-90-5	Aluminum	200.8	50 ^	2.0	83	ug/L	07/02/14 11:30	07/03/14 16:40	305194
7440-36-0	Antimony	200.8	6 *	1.0	< 1.0	ug/L	07/02/14 11:30	07/03/14 16:40	305194
7440-38-2	Arsenic	200.8	10 *	1.0	< 1.0	ug/L	07/02/14 11:30	07/03/14 16:40	305194
7440-39-3	Barium	200.8	2000 *	2.0	8.0	ug/L	07/02/14 11:30	07/03/14 16:40	305194
7440-41-7	Beryllium	200.8	4 *	0.3	< 0.3	ug/L	07/02/14 11:30	07/03/14 16:40	305194
7440-42-8	Boron	200.8		5.0	6.7	ug/L	07/02/14 11:30	07/03/14 16:40	305194
7440-48-4	Cobalt	200.8		2.0	< 2.0	ug/L	07/02/14 11:30	07/03/14 16:40	305194
7440-50-8	Copper	200.8	1300 !	1.0	1.5	ug/L	07/02/14 11:30	07/03/14 16:40	305194
7439-92-1	Lead	200.8	15 !	1.0	< 1.0	ug/L	07/02/14 11:30	07/03/14 16:40	305194
7439-93-2	Lithium	200.8		2.0	< 2.0	ug/L	07/02/14 11:30	07/03/14 16:40	305194
7439-96-5	Manganese	200.8	50 ^	2.0	39	ug/L	07/02/14 11:30	07/03/14 16:40	305194
7439-98-7	Molybdenum	200.8		2.0	< 2.0	ug/L	07/02/14 11:30	07/03/14 16:40	305194
7440-02-0	Nickel	200.8		1.0	< 1.0	ug/L	07/02/14 11:30	07/03/14 16:40	305194
7782-49-2	Selenium	200.8	50 *	2.0	< 2.0	ug/L	07/02/14 11:30	07/03/14 16:40	305194
7440-22-4	Silver	200.8	100 ^	2.0	< 2.0	ug/L	07/02/14 11:30	07/03/14 16:40	3051942
7440-66-6	Zinc	200.8	5000 ^	5.0	< 5.0	ug/L	07/02/14 11:30	07/03/14 16:40	305194
EEA has der	monstrated it can achieve these	e report limits in reagent	water, but ca	an not docu	ment them in all sa	ample matrices.			
-	Limit Type:	MCL		SMCL		AL			

Air Quality Monitoring

The objective of the air water quality monitoring is to collect baseline data for evaluation of potential environmental impacts to ambient air quality from the transportation of ore during mining operations. During February 2014, baseline air quality monitoring began at 7 sites between Eagle Mine and the Humboldt Mill including a site near the Marquette Board of Light and Power office in the City of Marquette (see Appendix B - Standards and Methodologies for Transportation Route

Community Environmental Monitoring Program of Eagle Mine

Air Quality Monitoring for a complete list of sites and monitoring parameters). Data gathered will be used to establish baseline air quality values for particulate matter (dust) and will be compared to the U.S. Environmental Protection Agency – Clean Air Act National Ambient Air Quality Standards. Air quality monitoring will be conducted on a quarterly basis for at least three years after Eagle Mine commences maximum production levels. Results for the monitoring site located in the City of Marquette are provided in Figure 1 and Tables 3-5 below. Note: air quality monitoring was not conducted during the second quarter 2014 as the portable sampler was sent in for factory equipment calibration.

Figure 1. Air Quality Monitoring Results for City of Marquette -Wright Street at MBLP

* 24 hour (daily average) not to be exceeded more than once per year on average over 3 years

Table 3. CEMP Air Quality Monitoring Wright Street at MBLP				
Sampling Date: February 1, 2014				
Hour	PM10 Concentration (ug/m3)			
0:00	3.81			
1:00	5.61			
2:00	4.46			
3:00	4.1			
4:00	4.62			
5:00	4.68			
6:00	5.41			
7:00	7.49			
8:00	9.21			
9:00	8.92			
10:00	10.67			
11:00	12.48			
12:00	14.14			
13:00	15.43			
14:00	18.69			
15:00	19.27			
16:00	17.74			
17:00	15.87			
18:00	15.92			
19:00	16.7			
20:00	16.35			
21:00	16.89			
22:00	17.54			
23:00	18.19			
Daily Average	11.8			
Daily Maximum	19.3			

Table 4. CEMP Air Quality Monitoring				
Wright Street at MBLP				
Sampling Date: July 29, 2014				
Hour	PM10 Concentration (ug/m3)			
0:00	2.57			
1:00	3.05			
2:00	4.76			
3:00	5.07			
4:00	4.81			
5:00	5.96			
6:00	7.21			
7:00	6.59			
8:00	4.97			
9:00	5.32			
10:00	6.04			
11:00	7.13			
12:00	8.17			
13:00	8.87			
14:00	8.35			
15:00	8.16			
16:00	7.64			
17:00	7.17			
18:00	8.08			
19:00	9.44			
20:00	8.45			
21:00	8.62			
22:00	9.16			
23:00	8.06			
Daily Average	6.8			
Daily Maximum	9.4			

CEMP Water Quality and Air Quality Monitoring in the City of Marquette, Michigan

Table 5. CEMP Air Quality Monitoring				
Wright Street at MBLP				
Sampling Date: October 30, 2014				
Hour	PM10 Concentration (ug/m3)			
0:00	4.43			
1:00	3.2			
2:00	3.2			
3:00	3.94			
4:00	4.23			
5:00	4.61			
6:00	4.55			
7:00	6.15			
8:00	6.91			
9:00	8.61			
10:00	9.82			
11:00	7.59			
12:00	6.43			
13:00	5.26			
14:00	5.99			
15:00	6.32			
16:00	6.81			
17:00	8.4			
18:00	7.65			
19:00	7.98			
20:00	9.47			
21:00	10.67			
22:00	11.02			
23:00	10.6			
Daily Average	6.8			
Daily Maximum	11.0			

CEMP portable monitoring equipment used to monitor ambient air quality along the ore Transportation Route between Eagle Mine and the Humboldt Mill.

APPENDIX A

Community Environmental Monitoring Program Standards, Methodologies, and Baseline Data for Surface Water Quality Monitoring along the Eagle Mine Transportation Route

I. Program Implementation and Quality Assurance

A. Annual Work Plan

- 1. The Annual Work Plan summarizes the objectives for environmental monitoring along the transportation route between the Eagle Mine and the Humboldt Mill. The objective of surface water quality monitoring is to collect baseline data for evaluation of potential environmental impacts to surface waters from the transportation of ore during mining operations.
- B. Quality Assurance
 - 1. Data will be collected in accordance with established protocols by experienced Superior Watershed Partnership staff and/or contractor(s).
 - 2. Equipment operation, calibration, and QA/QC are to be handled in accordance with specified operating procedures.

II. Elements of the Monitoring Program

A. Target Parameters and Equipment

- 1. Data will be collected in accordance with *Mine Permit Surface Water Monitoring* protocols and standards. Parameters, frequency of analysis, analytical methods and reporting limits are provided in Table 1.
- 2. Equipment to be used includes a multi-parameter water quality meter (YSI Model 556 MPS). The unit is able to capture field water quality parameters including, temperature, conductivity, percent saturation dissolved oxygen, pH, and oxidative-reduction potential (ORP).
- Laboratory analyses of anions and metals will be conducted by CEMP/EPA approved laboratories: Underwriters Laboratories, Inc., 110 South Hill Street, South Bend, Indiana 46617; low-level mercury concentrations will be analyzed at: North Shore Analytical, Inc, 4511 West 1st Street, Ste. #1, Duluth, Minnesota 55807.
- B. Monitoring Sites
 - There are 28 mapped road stream crossings along the Eagle Mine transportation route including 26 in the Dead-Kelsey Watershed (USGS Hydrologic Unit Code: 04020105, Lake Superior basin) and 2 in the Escanaba Watershed (USGS Hydrologic Unit Code: 04030110, Lake Michigan basin). Baseline surface water quality data will be collected from a downstream location at each site (Figure 1 and Table 2).
- C. Monitoring Period
 - 1. Begin monitoring program in the spring of 2014, prior to commencement of Eagle Mine ore production and processing (Fall 2014).
 - 2. Conduct monitoring once per year for at least three years after Eagle Mine commences maximum production levels.
- D. Data Analysis and Publication
 - 1. Data gathered will be used to establish baseline surface water quality values and will be compared to the Michigan Surface Water Standards, Rule 57 reference values.
 - 2. Data will be published in accordance with the CEMP Notification Plan (September 2013) including procedures for data processing, notification process, and schedule.

Table 1

Parameters, Frequency, Analytical Methods and Reporting Limits for Surface Water Quality Monitoring along the Eagle Mine Transportation Route

Parameters	Frequency of Analysis	Analytical Methods	Laboratory Reporting Limit	Units
Field				
Temperature	Annual	Field	na	°C
Dissolved Oxygen	Annual	Field	na	mg/L
рН	Annual	Field	na	SU
Specific Conductance	Annual	Field	na	umhos/cm
Flow	Annual	Field	na	cfs
Anions				
Alkalinity, Bicarbonate	Annual	310.1/SM 2320 B	2.0	mg/L
Alkalinity Carbonate	Annual	310.1/SM 2320 B	2.0	mg/L
Chloride	Annual	EPA-325.2/4599-CL E	1.0	mg/L
Flouride	Annual	SM 4500 F-C	0.10	mg/L
Nitrate Nitrogen	Annual	EPA-353.2/4500 NO3F	0.050	mg/L
Sulfate	Annual	EPA-375.4/9038	1.0	mg/L
Cations				
Calcium	Annual	EPA-200.7/6010B	0.50	mg/L
Potassium	Annual	EPA-200.7/6010B	0.50	mg/L
Magnesium	Annual	EPA-200.7/6010B	0.50	mg/L
Sodium	Annual	EPA-200.7/6010B	0.50	mg/L
Total Dissolved Solids	Annual	EPA-160.1	50	mg/L
Metals				
Aluminum	Annual	EPA-200.7/6010B	50	ug/L
Lithium	Annual	EPA-200.7/6010B	10	ug/L
Antimony	Annual	EPA-200.8/6020	2.0	ug/L
Arsenic	Annual	EPA-200.8/6020	1.0	ug/L
Barium	Annual	EPA-200.8/6020	10	ug/L
Iron	Annual	EPA-200.7/6010B	20	ug/L
Beryllium	Annual	EPA-200.8/6020	1.0	ug/L
Boron	Annual	EPA-200.8/6020	50	ug/L
Cadium	Annual	EPA-200.8/6020	0.20	ug/L
Chromium	Annual	EPA-200.8/6020	1.0	ug/L
Copper	Annual	EPA-200.8/6020	1.0	ug/L
Cobalt	Annual	EPA-200.8/6020	10	ug/L
Lead Manganese	Annual Annual	EPA-200.8/6020 EPA-200.8/6020	1.0 10	ug/L ug/L
Manganese Molybdenum	Annual	EPA-200.8/6020	10	ug/L ug/L
Nickel	Annual	EPA-200.8/6020	1.0	ug/L ug/L
Selenium	Annual	EPA-200.8/6020	2.0	ug/L
Silver	Annual	EPA-200.8/6020	0.20	ug/L
Zinc	Annual	EPA-200.8/6020	10	ug/L
Mercury ¹	Annual	EPA-1631E	0.00025	ug/L

¹ Acceptable by MDEQ to use 0.005 ug/L as reporting limit for mercury.

Powell 28 Lake Superior 22 Michigamme Twp 20 19 18 Champion Twp Ishpeming Twp B Marquette Twp 910,11,12 Negaunee Twp Marquette 71 Negaunee 31 Ishpeming 4 ly Twp Humboldt Twp Sands Twp :25

Figure 1 Community Environmental Monitoring Program Surface Water Quality Monitoring Sites along the Eagle Mine Transportation Route

 Table 2

 Surface Water Quality Monitoring Sites along the Eagle Mine Transportation Route

Мар				
Reference Number	Stream Name	Watershed Description	Location Description	Monitoring Description
1	Middle Branch Escanaba River	USGS HUC: 04030110, Escanaba Watershed, Lake Michigan basin	US41 W, Humboldt Township	Table 2 Field and Laboratory Parameters
2	Tributary to Middle Branch Escanaba River	USGS HUC: 04030110, Escanaba Watershed, Lake Michigan basin	US41 W, Ely Township	Table 2 Field Parameters
3	Unknown	Dead-Kelsey Watershed USGS HUC: 04020105, Lake Superior basin	US41 W, Ely Township	Table 2 Field Parameters
4	Carp Creek	Dead-Kelsey Watershed USGS HUC: 04020105, Lake Superior basin	US41 W, Ely Township	Table 2 Field Parameters
5	Unknown	Dead-Kelsey Watershed USGS HUC: 04020105, Lake Superior basin	US41 W, Ishpeming Township	Table 2 Field Parameters
6	Carp Creek	Dead-Kelsey Watershed USGS HUC: 04020105, Lake Superior basin	US41 W, City of Ishpeming	Table 2 Field and Laboratory Parameters
7	Carp River	Dead-Kelsey Watershed USGS HUC: 04020105, Lake Superior basin	US41 W, Negaunee Township	Table 2 Field and Laboratory Parameters
8	Brickyard Creek	Dead-Kelsey Watershed USGS HUC: 04020105, Lake Superior basin	US41W/Brickyard Road, Marquette Township	Table 2 Field Parameters
9	Unnamed Tributary to Dead River	Dead-Kelsey Watershed USGS HUC: 04020105, Lake Superior basin	Wright Street, Marquette Township	Table 2 Field Parameters
10	Backyard Creek	Dead-Kelsey Watershed USGS HUC: 04020105, Lake Superior basin	Wright Street, City of Marquette	Table 2 Field Parameters
11	Badger Creek	Dead-Kelsey Watershed USGS HUC: 04020105, Lake Superior basin	Wright Street, City of Marquette	Table 2 Field Parameters
12	Raney Creek	Dead-Kelsey Watershed USGS HUC: 04020105, Lake Superior basin	Wright Street, City of Marquette	Table 2 Field Parameters
13	Dead River	Dead-Kelsey Watershed USGS HUC: 04020105, Lake Superior basin	County Road 550, City of Marquette	Table 2 Field and Laboratory Parameters
14	Compeau Creek	Dead-Kelsey Watershed USGS HUC: 04020105, Lake Superior basin	County Road 550 Marquette Township	Table 2 Field and Laboratory Parameters

Мар				
Reference Number	Stream Name	Watershed Description	Location Description	Monitoring Description
15	Harlow Creek	Dead-Kelsey Watershed USGS HUC: 04020105, Lake Superior basin	County Road 550 Marquette Township	Table 2 Field Parameters
16	Little Garlic	Dead-Kelsey Watershed USGS HUC: 04020105, Lake Superior basin	County Road 550 Marquette Township	Table 2 Field Parameters
17	Big Garlic	Dead-Kelsey Watershed USGS HUC: 04020105, Lake Superior basin	County Road 550, Powell Township	Table 2 Field Parameters
18	Birch Creek	Dead-Kelsey Watershed USGS HUC: 04020105, Lake Superior basin	County Road 550, Powell Township	Table 2 Field Parameters
19	Sawmill Creek	Dead-Kelsey Watershed USGS HUC: 04020105, Lake Superior basin	County Road 550, Powell Township	Table 2 Field Parameters
20	Wilson Creek	Dead-Kelsey Watershed USGS HUC: 04020105, Lake Superior basin	County Road 550, Powell Township	Table 2 Field Parameters
21	Johnson Creek	Dead-Kelsey Watershed USGS HUC: 04020105, Lake Superior basin	County Road 550, Powell Township	Table 2 Field Parameters
22	Yellow Dog River	Dead-Kelsey Watershed USGS HUC: 04020105, Lake Superior basin	County Road 550, Ishpeming Township	Table 2 Field and Laboratory Parameters
23	Unknown	Dead-Kelsey Watershed USGS HUC: 04020105, Lake Superior basin	County Road 550, Ishpeming Township	Table 2 Field Parameters
24	Unknown	Dead-Kelsey Watershed USGS HUC: 04020105, Lake Superior basin	County Road 550, Powell Township	Table 2 Field Parameters
25	Unknown	Dead-Kelsey Watershed USGS HUC: 04020105, Lake Superior basin	County Road 550, Powell Township	Table 2 Field Parameters
26	Unknown	Dead-Kelsey Watershed USGS HUC: 04020105, Lake Superior basin	County Road 550, Powell Township	Table 2 Field Parameters
27	Alder Creek	Dead-Kelsey Watershed USGS HUC: 04020105, Lake Superior basin	County Road 550, Powell Township	Table 2 Field Parameters
28	East Branch Salmon Trout River	Dead-Kelsey Watershed USGS HUC: 04020105, Lake Superior basin	Triple A Road, Champion Township	Table 2 Field and Laboratory Parameters

APPENDIX B

Standards, Methodologies, and Baseline Data for Portable Air Quality Monitoring

I. Program Implementation and Quality Assurance

- A. Annual Work Plan
 - 1. The Annual Work Plan will summarize objectives for air quality monitoring using a portable air quality monitoring device.
- B. Quality Assurance
 - 1. A Quality Assurance Project Plan (QAPP) and Standard Operating Procedures (SOP) will be developed prior to commencing with monitoring activities. The QAPP/SOP will detail monitoring methodology, including: target pollutant(s), type of monitoring device, monitoring locations, collection frequency, coincidental data collection (meteorological, etc.), and monitoring event duration.
 - 2. The QAPP/SOP may be submitted to the Air Monitoring Unit, MDEQ for review and technical oversight
 - 3. Equipment operation, calibration, and QA/QC is to be handled in accordance with the QAPP/SOP and by experienced SWP staff and/or contractor(s).

II. Elements of the Portable Air Monitoring Program

- A. Target Pollutant(s) and Equipment
 - 1. Target pollutant(s) include particulate matter (PM) that are 10 micrometers in diameter or smaller.
 - 2. Equipment to be used includes a Thermo Scientific Area Dust Monitor (ADR-1500) realtime, ambient dust monitor portable sampler.
 - 3. Data will be collected in accordance with U.S. EPA-designated reference or equivalent sampling method, and/or relevant portions of the U.S. EPA's Quality Assurance Handbook for Air Pollution Measurement Systems, Volumes I- III.
- B. Siting
 - 1. The ADR-1500 will be used to monitor ambient air quality outside of designated sites including, but not limited to, the Eagle Mine site, the Humboldt Mill, and along designated transportation routes.
 - 2. The intake valve located on the ADR-1500 must be located within the EPA qualified breathing zone (4-7 feet off the ground).
 - 3. A pole or tri-pod mount system purchased with the ADR-1500 will be the device used to place the system in the required breathing zone.
- C. Monitoring Period
 - 1. Begin monitoring program in January 2013, prior to commencement of Eagle Mine operations (ore production and processing) to establish baseline data near the mine site, the Humboldt Mill, and along designated transportation routes.
 - 2. Conduct monitoring for at least three years after Eagle Mine commences maximum production levels.
- D. Data Analysis and Publication
 - 1. Data will be published in accordance with procedures described in the Communication Plan included in the Annual Work Plan including procedures for data processing, notification process, and schedule.
 - 2. Data gathered will be compared to baseline data collected prior to Eagle operations (early 2014).
 - 3. The results of monitoring events of sufficient duration (i.e., 24 hours) may be averaged in accordance with U.S. EPA procedures and compared against the National Ambient Air Quality Standards.

CEMP Portable Air Quality Monitoring Sites Locator Map

#1.....Eagle Air/MET Station #2....Intersection of Triple A and Northwest Road #3.....SWP Air/MET Station

#4.....MCRC Wetland Restoration Site

